

The name you can trust...

Manual of Tool Steel and Die Steel Products

The Name You Can Trust

CONTENTS

	npany Overview cess flow	
	el grade check list	
	0	
	duction to types of steel	
(a)	High Speed Steel	
	M2	
	M2A	
	M2B	
	M35	
	M35A	
	M42	
	4241/4341	
	МЗ	
	M4	
	М7	
	M18	
	M52S	
(b)	Powder Metallurgy	
	TPM 330	
	TPM 558	
	TPM 638	
	TPM 6711	
	Many more grades of HSS & DIE STEEL	
(c)	Cold Work Steel	
	D2	
	D3	
	01	
	02	
	A2	
	TGX-6 (DC53 Equivalent)	
	A8M	
	S7	
	1.2767	
	TSFD2	
	TSFDC53	
(d)	Hot Work Steel	
(-)	H-13 & H13M	
	TGE13	
	TGGP13	
	TGE-23	
	H-11 & H-11M	
	TGP11	
	1.2367 Supra	
	H-10	
	H-21	
	1.2714	
(e)	Plastic Moulds	
(e)	TGS 136	
	TGP 50	
	TGP 50	
	TGP60	
	1.2311	
TIT ^	1.2311 NIUM	
п22	S CUTTING TOOLS ABIDE CUTTING TOOLS	

I. TGK Company Overview

M/S. TGK SPECIAL STEEL PVT. LTD. is a new Joint venture company which have been established & cooperated with KUSHAL METAL & STEEL INDUSTRIES, Mumbai, recently for cutting tools raw material like High Speed Steel & Die Steel business in the Indian market. We would like to introduce few history about our mother company as follows.

Our mother company M/s. Tiangong International Company Limited, from August 1981, the day of its establishment, started its pursuit of a splendid dream. Thirty one years as one day, Tiangong made its way one of the world's large scaled and powerful enterprises in the field of a special steel and metal cutting tools. From the manufacturing of metal cutting tools, to the smelting and processing of High Speed Steel (HSS) and Die Steel Tiangong experienced great changes and developments time and time again.

Tiangong mainly produces High Speed Steel (HSS), HSS cutting tools and Steel. From 2001, every year, it was evaluated as China's largest HSS production manufacturer of the year. From 2005, Tiangong was evaluated as China's largest HSS exporter of the year. The company has set up and a complete set of production lines of HSS, die steel & cutting tools. For thirty one years, in line with the business concept as "everything starts from integrity" relying on experience managerial team, in the light of precise market orientation and strict quality control system, Tiangong wins the confidence of domestic buyer as well as Foreign one and scales the heights of scale volume.

The company produces fifty thousand tons of High speed steel yearly, staying the head of the world. With the annual output of 500 million twist drills and the export business volume of 100 million dollars, Tiangong's products are exporting in the market of over 50 countries in Europe. The company is also exporting to America, South Korea, Hongkong, Taiwan & India since 1968, started in the name of M/s. Dinesh Hardware Mart & then gradually in 1987 M/s. Kushal Metal & Steel Industries was created, Kushal Metal & Steel Industries has served Indian Tool room Industry for more than 40 years.

Tiangong means (TG) and Kushal Metal means (K) as a new joint venture company M/s. TGK Special Steel Pvt. Ltd., is running from the beginning of January 2012.

TGK Special Steel Pvt.	Ltd. is one of the Top Company to Sell
High Speed Steel	(TG M-2, TG M-35, TG 4241, TG M-42)
Hot Die Steel	(TG-H13, TG-H11, TGE-13, TGGP-13, TGE23, TG 1.2367SUP, TG H-10)
Cold Work Steel	(D2,D3,O1,A2,DC-53)
Plastic Mould Steel	(TGS 136, TGP 50, TGP 80, PHX SUPRA)
HSS Cutting Tools	
Titanium Alloys	
Carbide Cutting Tools	

To Service better & to respond faster to our domestic customers requirements we are expanding our network of Representative, Branches / Offices & Warehouses across India.

With our Hitech Warehouses in Mumbai, Bhiwandi & Ahmedabad; We can reach every part of India on time every time.

An overview of our ware houses we have the following infrastructure:

- Cranes 25 ton's 1 No, 15 Ton's 3 Nos., 10 Ton's 5 Nos. , 5 Tons's 5 Nos.
- Vertical BandSaw Machine 6 Nos. (Max 2500 x 1500, 2500 x 700)
- Horizontal bandsaw Machine -16 Nos. (Max 2200 x 1000, 800 x 800, 550 x 300, 650 x 500, 360 x 360, 350 x 300, 260 x 260)
- Circular Saw (4000 mm x 100 mm)
- Magnet Lifter 3 Ton's, 2 Ton's, 1 Ton, 500 Kg.

Machine Shop:

• Surface Grinder (Max 1300x2100) • Rotary Grinder (32" Across Corners) • Plano Miller (1400x2300 max)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

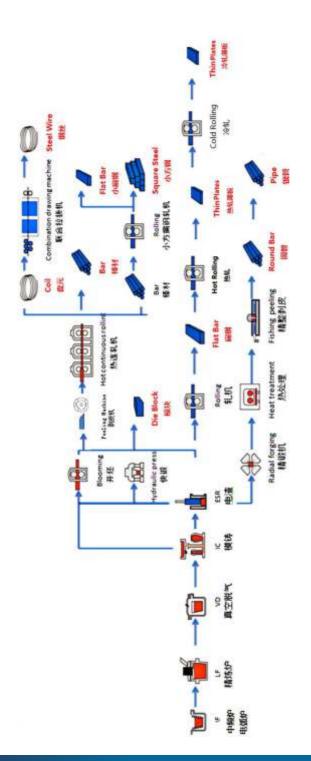
I. Principal Company Overview

Tiangong International Company Limited, established in 1981, with 3,300 employees, is a Chinese manufacturer in special tool steel, die steel, titanium materials and cutting tools, a national key high-tech enterprise, one Top 500 Chinese private enterprise and one Top 500 Chinese private enterprise with respect to manufacturing, ranking the first among private enterprises of special steel production in China, as well as top 3 die steel production enterprise in the world and the number one in China for five years consecutively. After 36 years of development, Tiangong has established an integral scientific research, production and sales system ranging from mining, special material production and tool fabrication. Now, it has world advanced production equipment and process technology, featuring with quite obvious industrial advantages.

Currently, high-speed steel, die steel, cutting tools and titanium alloy products of Tiangong are widely used in aviation, automobile, high-speed train, petrochemical engineering, machining and other different fields, widely sold in almost one hundred countries and regions including western countries, Hong Kong, and Taiwan. The Company has set up international sales branches in the USA, India, South Korea, Czech, Italy, Russia, Turkey, Canada and other countries and regions.

Tiangong International was listed in the main board of Hong Kong Exchanges and Clearing Limited on Jul. 26, 2007 [Hong Kong Stock No.: 00826]. The subsidiary Tiangong Limited was listed on New OTC on Dec. 3, 2015 [Code: 834549].

Tiangong International insists on implementing the path of combined production, study and scientific research, establishing favorable production, study and scientific research cooperation relationship with Central Iron & Steel Research Institute, Southeast University, Nanjing Tech University, etc. Tiangong International has established high-speed steel research center with Central Iron & Steel Research Institute, high-speed steel and tool engineering research center with Southeast University, Jiangsu Ocean Engineering New Material Laboratory with Nanjing Tech University, as well as Jiangsu post-doctoral Scientific Research Workstation, making Tiangong International the most leading-edge and most authoritative test base and scientific research center in terms of high-speed steel, tool steel and die steel. With the help of production, study and scientific research, Tiangong International has fostered a great batch of skilled practical talents with strong innovation, applied over one hundred national patents successfully and improved research capability and production technology significantly.


Tiangong International is the only enterprise realizing whole industrial chain and all variety special new material production, establishing a complete production chain ranging from mining, smelting, secondary melting, forging, cold rolling and hot rolling, pulling and rolling, as well as further processing. Tiangong International can produce 50,000t high-speed steel per year, covering all types of products ranging from round bar, flat bar, square bar, steel wire, vertical bar, and sheet metal. Besides, Tiangong International can produce 200,000t die steel per year, with products covering from round bar, flat bar, modules, etc. Tiangong International can produce almost 10,00t titanium alloy products per year, with products covering rods, pipes, medium thick boards, thin boards, rod stocks and wires.

In Oct. 2016, Tiangong International won the lawsuit against anti-dumping and anti-subsidy of European Union, becoming the first enterprise winning such case in Chinese special steel industry. On Jul. 26, 2017, China high-quality tool and die material industrial technology innovation strategic alliance initiated by Central Iron & Steel Research Institute, China Die & Mould Industry Association, China Special Steel Enterprise Association, Jiangsu Tiangong Tool Co., Ltd., China Metallurgical Information and Standardization Institute was set up in Beijing, symbolizing that Tiangong International will provide strategic support for "Made in China 2025".

The Name You Can Trust

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Ladle Finery

Electric Arc Furnace

VOD

Electric Annealing Furnace

Electroslag Remelting

HSS Ingot Casting

RADIAL FORGING

FLAT BAR ROLLING

ULTRASONIC INSPECTING

LAB

Digital Rockwell Hardness

Electronic Brinell Hardness

Type 2206 Surface Roughness measuring apparatus

American and Swiss spectrometers content of W, Mo, Cr, V, Co, S, P, N, Nb and so on.

The Name You Can Trust

III. Steel grade check list

Hot for s	Tiangong Steel Grade	AISI	DIN	JISS	UDDEHOLM	BOHLER	DAIDO
	TGE13	H13	1.2344	SKD61	ORVAR 2M	W302 ISOBLOC	
	TGGP13	H13	1.2344	SKD61	ORVAR SUP		
	TGE23				DIEVAR	W403VMR	DH31-S
ging eel	1.2367 SUP		1.2367				
g di	H10		1.2365				
e	TGGP11	H11	1.2343		VIDAR SUPEIOP	W400VMR	
	01	01	1.2510	SKS3	ARNE		
с	02	02	1.2842				
	A2	A2	1.2363		RIGOR		
foi e ste	1.2080	D3	1.2080	SKD1			
	TSFD2	D2	1.2379	SKD10		K110	DC11
ıg	SKD11			SKD11			
	TSFDC53						DC53
		CRUCIBLE		ERASTEEL		BOHLER	
	TPMM4	cpmRexM4		ASP2004		S690	
Pow etal	TPM330			ASP2023		S790	
	TPM558			ASP2030		S390	
У	TPM9638	cpmRex45		ASP2052		S590	
	TPM6711			ASP2060		S290	

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

www.tgkssl.com

- 7 -

/ The Name You Can Trust

TEEL PVT. LTD.	
SPECIAL S'	
Þ	

TGS 136 420 N Uter Subsection SUS420U2 SUS42U2 SU	Types of steel	Tiangong Steel Grade	ASTM	DIN	JISS	UDDEHOLM	BOHLER	DAIDO
TGP50 1.2083 1.2083 STARVAX STARVAX TGP80 1.2083 1.2083 1.2083 1.2083 TGP80 N3-1 1.2083 SKH52 SKH52 M3 M3-1 1.3344 SKH52 SKH53 TGM2 M42 1.3247 SKH53 SKH54 TGM35A M2 1.3243 SKH51 SS00 M4 M35 1.3243 SKH51 SS00 M4 M4 1.3343 SKH54 SS00 M4 M4 1.3343 SKH55 SS00 M4 M4 1.3343 SKH55 SS00 M4 M4 1.3348 SKH55 SS00 M4 M4 1.3348 SKH54 S705 W18 T1 1.3348 SKH54 S705 W18 T1 1.3348 SKH54 S705		TGS136	420		SUS420J2			
TGP80 TGP80 M3-1 1.3344 SKH52 M M M3 M3-1 1.3344 SKH52 M S	die	TGP50		1.2083		STARVAX		
M3 M3-1 1.3344 SKH52 M TGM42 M42 1.3347 SKH59 M TGM2B M2 1.3247 SKH59 M TGM2B M2 1.3243 SKH51 M TGM35A M35 1.3343 SKH51 M M4 M4 M4 1.3243 SKH54 M M7 M4 M4 1.3348 SKH54 M W18 T1 1.3355 SKH58 M M		TGP80						NAK80
TGM42 M42 1.3247 SKH59 TGM2B M2 1.3243 SKH51 TGM35A M35 1.3343 SKH55 TGM35A M35 1.3243 SKH55 M4 M4 M4 1.3248 SKH54 <td< td=""><td>I</td><td>M3</td><td>M3-1</td><td>1.3344</td><td>SKH52</td><td></td><td></td><td></td></td<>	I	M3	M3-1	1.3344	SKH52			
TGM2B M2 1.3343 SKH51 TGM35A M35 1.3243 SKH55 M4 M4 M4 1.3243 SKH54 M7 M7 1.3348 SKH54 W18 T1 1.3355 SKH58 SKH58 M M	Hig	TGM42	M42	1.3247	SKH59		S500	
TGM35A M35 1.3243 SKH55 M4 M4 M4 SKH54 M7 M7 1.3348 SKH54 W18 T1 1.3355 SKH28 M52S SKH54	h-sj	TGM2B	M2	1.3343	SKH51		S600	
M4 M4 M4 SKH54 M7 M7 1.3348 SKH58 W18 T1 1.3355 SKH2 M52S M52S SKH5	oee	TGM35A	M35	1.3243	SKH55		S705	
M7 M7 1.3348 SKH58 W18 T1 1.3355 SKH2 M52S SKH2 SKH2	d to	M4	M4		SKH54			
W18 T1 1.3355 SKH2 M52S M52S SKH2 Image: SKH2	ool s	M7	M7	1.3348	SKH58		S400	
	stee	W18	T1	1.3355	SKH2		S200	
	el	M52S						

Tiangong	Similar to Grade	ပ	ç	×	Mo	>	ů	Tiangong	Similar to Grade	ပ	ç	N	Mo	>	ပိ
TPM330	ASP2023	1.28	4.2	6.4	5	3.1	1	TPMD91	CPM S90V	2.3	14		٢	6	
TPM558	ASP2052	1.6	4.8	10.5	2	5	8	TPMB42	K490(Microclean)	1.4	6.4	3.5	1.5	3.7	
TPM638	ASP2030	1.28	4.2	6.2	5	3.1	8.5	TPMB44	CPM 4V	1.35	5	1	2.95	3.85	
TPM380	ASP2053	2.48	4.2	4.2	3.1	8		TPM6711	ASP2060	2.3	6.5	6.5	7	6.5	10.5
TPMB31	CPM 3V	0.8	7.5	:	1.3	2.75		TPM555	ASP2015	1.55	4	12		5	5

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

www.tgkssl.com

ė

IV. INTRODUCTION TO TYPES OF STEEL

Steel Grade (TG M-2 (DIN-1.3343)

Steel properties : For all metal-cutting tools for roughing or finishing, such as twist drills, all kinds of milling cutters, screw taps, screw dies, broaches, reamers, countersinks, thread chasers, segments for circular saws, shaping tools and woodworking tools. Also highly suitable for cold-forming tools, such as cold extrusion rams and dies, as well as cutting and precision cutting tools, plastic moulds with elevated wear resistance and screws.

Applications : Standard high-speed steel grade. High toughness and good cutting power owing to its well-balanced alloy composition; thus suitable for a wide variety to applications.

It is typical steel grade of W-Mo current hss, with high toughness, good thermal plasticity, high hardness, as well as red gardness and hot hardness.

TGM2 is suitable for produce in high quality cutting tools, such as hob, knife, and milling cutter. TGM2A is suitable for produce in common cutting tools with high toughness, also suitable for cold-forming tools. M2 is suitable for produce common tools.

Similar Steel Grade :

CHINA	BRAZIL	AUSTRIA	GERMANY	SLOVANIA		JAPAN		CHEZ. REP
TG	VILLARES	BOHLER	DEW	RAVNE	HITACHI	NIPPON	SANYO	POLDI
TGM2	VW/M2	S600	1.3343	BRM2	YXM1	H51	QH51	MAX SP. MO5S

Chemical Composition: (%)

Indiar	1		Che	emical	Analy	sis Ty	pical '	Value	% (Mi	n - Ma	x)	Delivery C	ondition
IS	С	S	Р	Si	Mn	Ni	Cr	Мо	V	W	other	Heat Treatment	Hardness
M2	0.86- 0.94	<0.03	<0.03	0.20- 0.45	0.20- 0.40	***	3.80- 4.50	4.70- 5.20	1.70- 2.10	5.90- 6.70	***	Annealed	<255

PRODUCTION PROCESS:

EAF→LF→VD→ESR→BLOOM IN FOLLOWING MACHINE : _____ QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING

UNDER ANNEALED CONDITION : Hardness : HB205-255 Precision Forging :
 ⊕ 81-255mm
 Hot Rolled & Annealed Peeled :
 ⊕ 14.5-80.0mm
 Cold Drawn / Sand Blasted (Coil) :
 ⊕ 2.0-13.5mm
 Cold Drawn / Centreless Ground :
 ⊕ 2.0-14.4mm

REDUCTION RATIO :

As 1:4 or 1:5

DELIVERY STATUS :

As Cold drawn / Hot rolled / forged, in annealed condition.

SIZE : Rounds

Cold Drawn/Ce	entreless Ground	d Bar	Hot Rolled Ba	ar	Forged bar		Coil
Φ 2.0	0 - 14.4mm		¢14.5-80.0m	m	Ф81.0-205.0m	m ¢2.0	- 16.0mm
SIZE : Flats		SIZE	: Square	SIZ	E : Sheets		
Thickness	Width	4mn	n to 100mm		Thickness	Width	Length
5mm-150mm	5mm-810mm			0.	5mm to 20mm	810mm	2500mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Steel Grade (TG M-2 (DIN-1.3343)

HEAT TREATMENT :

Annealing:

Annealing temperature: $860-880^{\circ}$ C, keep this temperature by 2-4 hours, then cooling to 600° C in the speed of less than 30° C/h. If after cold drawn process, suggest add stress relieving annealing process Under the temperature of $600-700^{\circ}$ C, keep this temperature by 2 hours.

Quenching & Tempering (salt bath)

Quenching : Pre-heating in two steps : Heating temperature under Austenitizing temperature Heating coefficient 10-15 sec/mm, que temperature.	: 400-500°C and 850-900°C : 1185-1225°C enching under 580-620°C, then cooling to room
<i>Tempering:</i> Tempering temperature under : 540-56 each time 1 hour, then cooling to room	

Steel Grade (TG M-2A (Special Grade for Taps)

Steel properties: Comparing to M2, Grade TGM2A has low percentage of carbon, added Niobium. With low percentage of carbon to increase toughness, and Niobium added to fined crystal grains of steel to obtain high strength and toughness. This grade is specially suitable for tabs of thread tools.

Material: Forged/Hot Rolled round bars - Spherodized annealed - Grinding/turned/peeled.

Chemical Composition: (%)

TG		(Chemi	cal An	alysis	Туріс	al Valı	ıe % (I	Vin - N	/lax)		Delivery C	ondition
	С	S	Ρ	Si	Mn	Nb	Cr	Мо	V	W	other	Heat Treatment	Hardness
TGM-2A	0.83- 0.85	Max 0.010	Max 0.030			0.10- 0.12	3.90- 4.20	4.80- 4.85	1.80- 1.90	6.00- 6.20	***	Annealed	<255

PRODUCTION PROCESS:

EAF→LF→VD→ESR→BLOOM IN FOLLOWING MACHINE : _____ QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING

Precision Forging	:
Hot Rolled & Annealed Peeled	: 0 14.5-80.0mm
Cold Draw / Sand Blasted	: Ф 2.0-13.5mm
Cold Drawn Centerless Ground	: Ф 2.0-14.4mm

SIZE : Rounds

Cold Drawn/Ground Bar	Hot Rolled Annealed & Peeled	Forged+Annealed+Turned Bar	Coil
Ф 2.0 - 14.4mm	014.5-80.0mm	Ф81.0-255.0mm	¢2.0-13.5mm

UNDER ANNEALED CONDITION:

Hardness : Max. 255HB

STRAIGHTNESS: Max. 2.0 mm/m **OVALITY :** 1/2 *TOLERANCE

NON-METALIC INCLUSIONS :

Acc. to ASTM E 45 method

```
A th. 1,0 / heavy 0.5 - B th. 1.0 / heavy 0,5 - C th. 1,0 / heavy 0,5 - D th. 1.5 / heavy 0.5.
```

MICROSTRUCTURE: Acc. to SEP 1615

	≤16mm	≤ 16-25mm	≤ 25-40mm	≤ 40-63mm	≤ 63-100mm	≤ 100-160mm	≤ 160-200mm
	А	А	А	А	А	А	А
	В	В	В	В	В	В	В
	С	С	С	С	С	С	С
TG Stage	1B	2B	3B	4B	5B	6A, 5B	7A, 6B

GRAIN SIZE:

The grain size (ASTM) should be 10~11.5#

ULTRASONIC TEST:

According to SEP 1921 class E/e/3, 100% scanning.

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel Grade (TG M-2A (Special Grade for Taps)

HEAR TREATMENT :						
Soft annealing 780-860°C	<i>Cooling</i> 10-20 [°] C/h furnace	Hardness max.280HB				
Stress relief annealing 600-650°C	<i>Cooling</i> furnace					
1st pre heating up to approx.450°C	2nd and 3rd pre heating a) 850°C b) 850-1050°C	<i>Hardening</i> 1200-1220°C				
<i>Quenching</i> saltbath 550°C oil, air, vacuous						
Tempering : Thrice 550-560°C Hardness after tempering 63-66HRC.						

Steel grade (TGM2B)

Smelting method: 15T intermediate frequency furnace +LF+VD+ ESR

Main characteristics: Favorable tenacity, high red hardness and excellent abrasion resistance

Major applications:

Due to favorable hardness and abrasion resistance, it's mainly used to fabricate tools to cut ∻ materials which are difficult to be cut. It's mainly used as various cutting tools, for example, drilling bits, screw taps, milling cutters, drawing tools, roller cutters, etc.

Chemical constituent %:

С	W	Мо	Cr	V	Co	Р	S
0.89	6.2	4.8	4.15	1.9	1	≤0.026	≤0.003

O (ppm)	N (ppm)	H (ppm)
≤20	≤100	≤2.5

Physical property:

Room temperature density (g/cm ³)	Specific heat of room temperature (J/g.K)	20°C thermal conductivity (W/m•K)	Elastic modulus (N/mm²)	Resistivity (Ohm mm²/m)
8.12	0.46	19.0	217,000	0.54

Ultrasonic flaw detection:

As per SEP1921 D/d or customer requirements.

Purity:

Class A		Cla	ss B	Clas	ss C	Clas	ss D
Fine Coarse		Fine	Coarse	Fine	Coarse	Fine	Coarse
0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5

Delivery state:

(1) Delivery under balling annealing state, delivery hardness ≤269HB.

PRODUCTION PROCESS:

 $EAF \rightarrow LF \rightarrow VD \rightarrow ESR \rightarrow BLOOM IN$ FOLLOWING MACHINE : QUICK FORGING (12.5MN). HAMMER, PRECISION FORGING Cold Drawn Centerless Ground : 0 2.0-14.4mm

Precision Forging

: 0 81-255mm

Hot Rolled & Annealed Peeled : 0 14.5-80.0mm

Cold Draw / Sand Blasted (Coil) : \$\Phi 2.0-13.5mm

SIZE : Rounds

Cold Drawn/Ground Bar	Hot Rolled Annealed & Peeled	Forged+Annealed+Turned Bar	Coil
Ф 2.0 - 14.4mm	Ф14.5-80.0mm	Ф81.0-255.0mm	¢2.0-13.5mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

		Therma	treatment			
Softening a	nnealing	Quench		Tempering		
Heating to 860-8 insulation; cooli slowly and the from the fr	880°C for heat ing to 550°C n removing	1,210~1,220°C salt bat Air cooling t temperature after level by level q	quenching, h; p room 500~600°C	Tempering temperature 540~560 °C; tempering for 3 times; material temperature shall reach the temperature interval; each time of heat insulation shall be not less than 1h; air cooling to room temperature		
				1,210°C quenching		
Quenching temperature (HRC)			Tempering temperature (HRC)			
100 100	Quenching temperatu	ire (°C)	6 e	Tempering temperature (°C)		
		nardness relation		g temperature and hardness relation curve		
	1400					
	1300					
	1200 -					
	1100					
	1000 -		////			
_	900		111	Ac1e (860°C)		
emperature [10]	400 -		111	Ac1b (810°C)		
eratur	700 -			6.00		
duaj	600 -		111			
-	500	A+C	1//			
	400					
				8		
	300		80 9	10		
	200 Ms (160°C)		80 0			
	100 -	м	/ /			
	0.1 1	10 10	0 1000	164 165 166		
	Time [s]	Time (min) 1	10	100 1000 10000		
		0.07	Time [h]	1 2 4 68 16 4872 144		
			curve			

Steel grade (TGM2B)

Steel Grade (TG M-35 (DIN-1.3243)

Steel Properties: This kind steel is suitable for conditions involving thermal stresses and discontinuous cutting. Heavy-duty miling cutters of all kinds, gear cutter, highly stressed twist drills and taps, profile knives, machining of high-strength material, broaches.

Applications: It is one of the W-Mo Co hss grade with good cutting character. The res hardness, hot hardness and wearing resistance are all better than W6M05Cr4V2.

Similar Steel Grade :

CHINA	BRAZIL	AUSTRIA	GERMANY	SLOVANIA	JAPAN		CHEZ. REP
TG	VILLARES	BOHLER	DEW	RAVNE	HITACHI	NIPPON	RAVNE
TGM35	VK5E	S700	1.3245	BRCMO	YXM4	HM35	MAXSP 75D

Chemical Composition: (%)

Indian		Chemical Analysis Typical Value % (Min - Max)										ondition
IS	C S P			Si	Si Mn Cr M		Мо	V W		Co	Heat Treatment	Hardness
M35	0.88- 0.96	<0.03	<0.03	0.20- 0.45	0.20- 0.40	3.80- 4.50	4.70- 0.52	1.70- 2.00	6.00- 6.70	4.55- 5.50	Annealed	<255
M35A	0.91- 6.0	<0.003	<0.022	***	***	4.0	4.8	1.92	***	4.85		

New Development M35A Chemical & Application: • Suitable for fabricating various abrasion-resistant and impact-resistant tools for powerful cutting, high-level trimming dies, screw dies, tools of complicated shapes requiring tenacity, reamers, milling cutters, punches, etc. • Mainly used as roller cutters, drawing tools, end mills, etc.

PRODUCTION PROCESS:

EAF→LF→VD→ESR→BLOOM IN FOLLOWING MACHINE : QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING Precision Forging :
 ⊕ 81-255mm
 Hot Rolled & Annealed Peeled :
 ⊕ 14.5-80.0mm
 Cold Drawn / Sand Blasted (Coil) :
 ⊕ 2.0-13.5mm
 Cold Draw / Centreless Ground :
 ⊕ 2.0 -14.4mm

UNDER ANNEALED CONDITION : Hardness : HB205-255 **REDUCTION RATIO:**

As 1:4 or 1:5

DELIVERY STATUS :

As Cold drawn / Hot rolled / forged, in annealed condition.

SIZE : Rounds

Cold Drawn/Centreless Ground Bar				ot Rolled Annealed Pee	led	Forged Bar & Turned Coil		
Ф 2.0 - 14.4mm				014.5-80.0mm		Ф81.0-255.0mm Ф2.0 - 13.5mm		
SIZE : Flats				SIZE : Square	SIZ	ZE : Sheets		
	Thickness	Width		4mm to 100mm		Thickness	Width	Length
	5mm-150mm	5mm-810mm			0	.5mm to 12mm	810mn	a 2500mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

www.tgkssl.com

HIGH SPEED STEEL

Steel Grade (TG M-35 (DIN-1.3243)

HEAT TREATMENT :

Annealing:

Annealing temperature: 860-880°C, keep this temperature by 2-4 hours, then cooling to 600°C in the speed of less than 30°C/h if after cold drawn precess, suggest and stress relieving annealing process. Under the temperature of 600-700°C, keep this temperature by 2 houres. Quenching & Tempering (salt bath).

QUENCHING :

 Pre-heating in two steps :

 Heating temperature under
 : 400-500°C and 850-900°C

 Austenitizing temperature
 : 1180-1220°C

 Heating coefficient 10-15sec/mm, quenching under 580-620°C, then cooling to room temperature

Tempering:

Tempering temperature under : 540-560°C, tempering 3 times, each time 1 hour, then cooling to room temperature.

Steel grade (TGM35A)

					Sleer	ji aue (GIVIS	JA)						
Smelting met	hod:	: 15T int	ermedia	te fre	quency f	urnace	+LF+	VD+l	ESR					
Main charact	erist	ics: Fa	vorable	tenac	ity, high	red ha	rdnes	s and	l excelle	ent abra	sion	resista	ince.	
Major applica	for el tri utter sed	fabricati mming s, punch as roller	dies, sc ies, etc.	rew	dies, too	ols of c	compli	cate						
Chemical constituent %:														
С			Мо		Cr	V		Co		Р			S	
0.91	6	5.0	4.8		4.0	1.92	2	4.85	5	< 0.022	2		<0.0	003
		0 (ppm)			N (ppn	n)			H (ppm	ı)			
			20			≤100				≤2				
Physical prop	perty			1			1				-			
Room temperatur density (g/cm ³)	temperature of room density temperature			20°C thermal conductivity (W/m•K)				Elastic modulus (N/mm²)			Resistivity [Ohm mm ² /m]			
8.1 0.46			19.0			2	217,000		(0.60				
As per SEP1 Purity:	921	D/d or c	ustomer	requ	irements	i.								
Clas	ss A			Class B C			Cla	Class C		Class D				
Fine	С	oarse	Fin	е	Coars	se	Fine	Э	Coa	rse	Fi	ne	C	oarse
0.5		0.5	0.5	5	0.5		0.5		0.	5	1	.0		0.5
Delivery state (1) Delivery u		r balling	annealiı	ng sta	ate, deliv	ery har	dness	≤26	9HB.					
(1) Delivery under balling annealing state, delivery hardness ≤269HB. PRODUCTION PROCESS: EAF→LF→VD→ESR→BLOOM IN FOLLOWING MACHINE : QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING AMMER, PRECISION FORGING														
SIZE : Roun	ds													
Cold Drawn/Ce	entre	less Gro	und Bar	Hot	Rolled Ar	nnealed	Peele	d F	orged B	ar & Turr	ned		Coi	1
Φ 2.0	- 1	4.4mm			¢14.5-	80.0m	m	¢	0 <mark>81.0-</mark> 2	255.0m	m	Φ2.0) - 1	3.5mm
IZE : Flats				s	IZE : S	quare	\$	SIZE	: She	ets				
Thickness	5	W	idth	4	4mm to	100m	m	-	Thickne	ess	N	Nidth	l	ength

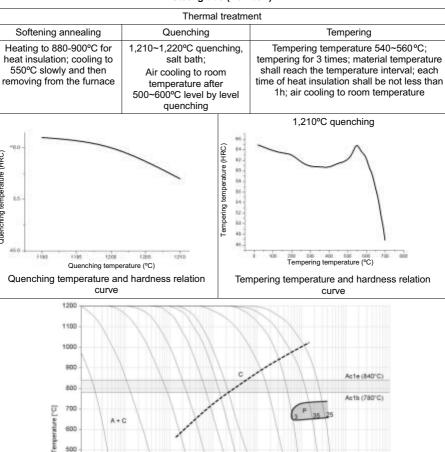
Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

0.5mm to 12mm

2500mm

810mm

www.tgkssl.com


5mm-150mm

5mm-810mm

HIGH SPEED STEEL

The Name You Can Trust

Steel grade (TGM35A)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

870

1000

828

835 870

B

555

1Ė4

100

2 4 6 8 18

493

503

1000

1E5

500 400

300 200

100

0

0.1 Time [s]

Ms (165°C)

841

M+RA

882

Time Imini

10

Quenching temperature (HRC)

CCT curve

840

100

1E6

10000

4872 144

Steel grade (TGM42)

Smelting method:	1FT intermediate	fraguenast furnaga	
Smenna memoa	151 Interneolate	requency rumace	

Main characteristics:

High steel hardness, reaching 68HRC after quenching and tempering, favorable hot hardening, capable of manufacturing various complicated tools with high precision.

Major applications:

- ♦ Capable of manufacturing abrasion resistant and impact resistant tools for various types of powerful cutting.
- + High-level trimming dies, screw dies, formed punches of complicated shapes requiring tenacity, etc.;
- ∻ Scrapers, hobs, drilling bits, etc.

♦ Cold forging molds.

Chemical constituent %:

С	Si	Mn	W	Cr	Мо	V	Co	Р	S
1.08	0.3	0.3	1.45	3.95	9.40	1.15	7.85	≤0.020	≤0.001
O (ppm)				N	(ppm)		H (
	≦15		≦100			<pre>4</pre>			

Physical property:

	-					
Room	Specific heat	at 200°C thermal Elastic		Linear expansivity (×10 ⁻⁶ K)		
temperature density (Kg/m ³)	of room temperature J/Kg·K)	conductivity (W/m•K)	modulus (N/mm ²)	20~200°C	20~400°C	
8.01	460	19.00	220,000	10.8	11.6	

Ultrasonic flaw detection: As per SEP1921 D/d or customer requirements.

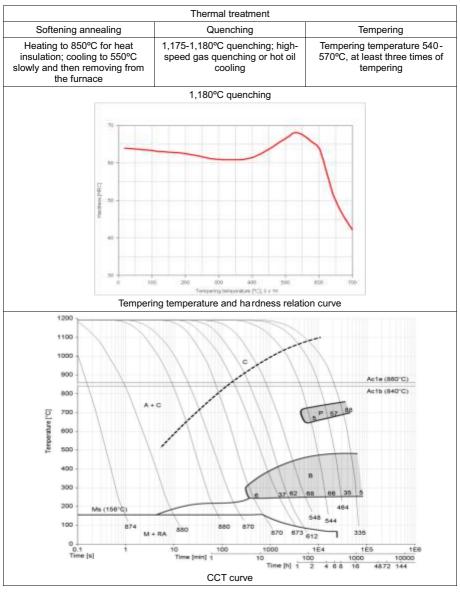
Purity:

Class A		Class B		Clas	ss C	Class D	
Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse
0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5

Delivery state: (1) Delivery under balling annealing state, delivery hardness ≤269HB

PRODUCTION PROCESS:

EAF → LF → VD → ESR → BLOOM IN FOLLOWING MACHINE : \rightarrow QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING


*	Precision Forging Hot Rolled & Annealed Peeled	:
	Cold Drawn / Sand Blasted (Coil) Cold Draw / Centreless Ground	: Φ 2.0-13.5mm : Φ 2.0 -14.4mm

SIZE : Rounds

Cold Drawn/Centreless Ground Bar		Hot Rolled Annealed Peeled		d Forged Bar & Turn	ed	Coil	
Ф 2.0 - 14.4mm		014.5-80.0mm		Ф81.0-255.0m	m ¢2.0	Ф2.0 - 13.5mm	
SIZE : Flats							
\$	SIZE : Flats			SIZE : Square	SIZE : Sheets		
3	SIZE : Flats Thickness	Width		SIZE : Square 4mm to 100mm	SIZE : Sheets Thickness	Width	Length

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TGM42)

Steel Grade (TG 4241 / TG 4341)

Steel Properties: It is mainly used to produce drill, tap, saw bit and high efficiency wood tool.

Applications : It is an economical low alloy high-speed steel with good red hardness, good toughness and thermal plasticity. It is generally used soft and moderate intensity metal.

Chemical Composition: (%)

S	pecial grade	С	S	Р	Si	Mn	Cr	Мо	V	W
	TG4241	0.90-0.95	≤0.020	≤0.030	0.80-1.20	0.25-0.40	4.00-4.50	1.00-1.20	0.80-1.00	1.80-2.50
	TG4341	0.83-0.93	≤0.020	≤0.030	0.70-1.00	0.20-0.40	3.80-4.40	2.50-3.50	1.20-1.80	3.50-4.50

 \rightarrow

PRODUCTION PROCESS:

EAF→LF→VD→ESR→BLOOM IN FOLLOWING MACHINE : QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING

Г	Precision Forging	:
		: Ф 14.5-80mm
	Hot Rolled & Sand Blasted (Coil)	: \$\Phi 2.0 -13.5mm
	Cold Drawn Centreless Ground	: Ф 2.2-14.4mm

UNDER ANNEALED CONDITION :

Hardness : HB205-255

REDUCTION RATIO:

As 1:4 or 1:5

DELIVERY STATUS :

As Cold drawn / Hot rolled / forged, in annealed condition.

SIZE : Rounds

Cold Drawn/Centreless Ground Bar	Hot Rolled Bar	Forged bar	Coil
Ф 2.0 - 14.4mm	0 14.5 - 80.0mm	¢81.0 - 255.0mm	0 2.0 - 13.5mm

SIZE : Flats

Thickness	Width
5mm - 150mm	5mm - 810mm

SIZE : Squares

4mm to 100mm

SIZE : Sheets

Thickness	Width	Length
0.5mm to 12mm	810mm	2500mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel Grade (TG 4241 / TG 4341)

HEAT TREATMENT :

Annealing:

Annealing temperature: 860-880°C, keep this temperature by 2-4 hours, then cooling to 600° C in the speed of less than 30° C/h. If after cold drawn precess, suggest add stress relieving annealing process Under the temperature of $600-700^{\circ}$ C, keep this temperature by 2 houres.

Quenching & Tempering (salt bath)

Quenching:

Pre-heating in two steps:

Heating temperature under : 400-500°C and 850-900°C

TG4241 austenitizing temperature

: 1150-1180°C

TG4241 austenitizing temperature : 1160°C-1190°C

Heating coefficient 10-15 sec/mm, quenching under 580-620°C, then cooling to room temperature.

Quenching temperature difference in 5-10°C between TGM2, TGM2A;

TGM2A's quenching temperature is higher than TGM2

Tempering:

Tempering temperature under: 540-560°C, tempering 3 times, each time 1 hour, then cooling to room temperature.

Steel grade (M3)

Main characteristics:

M3 is high-speed tool steel of tungsten and molybdenum system with high vanadium, for tools used for cutting requiring favorable abrasion resistance.

Major applications:

- ♦ Screw taps, turning tools, milling cutters, drilling bits, etc.
- ♦ Cold forging molds.

Chemical constituent %:

С	Si	Mn	W	Cr	Мо	V	Co	Р	S
1.07	0.35	0.3	6.3	3.95	6.20	2.40		≤0.025	≤0.005

Physical property:

Room	Specific heat	20°C thermal	Elastic	Linear expansivity (×10 ⁻⁶ K)				
temperature density (Kg/m ³)	of room temperature (/Kg·K)	conductivity (W/m•K)	modulus (N/mm ²)	20~200°C	20~400°C			
8.07	460	19	217,000	11.3	11.7			

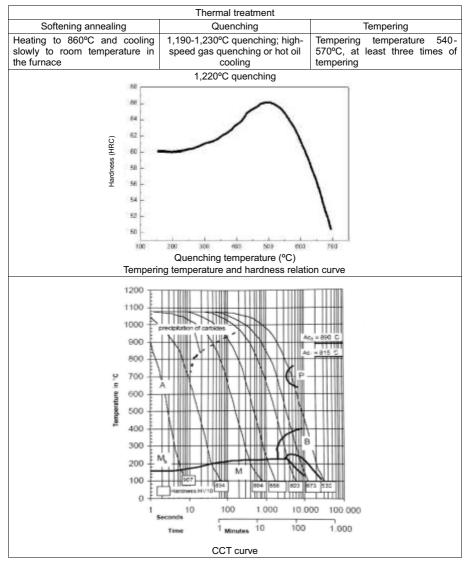
Ultrasonic flaw detection:

As per SEP1921 D/d or customer requirements.

Purity:	
---------	--

Clas	ss A	Cla	ss B	Clas	ss C	Class D		
Fine	Coarse	Coarse Fine		Fine	Coarse	Fine	Coarse	
0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5	

Delivery state:

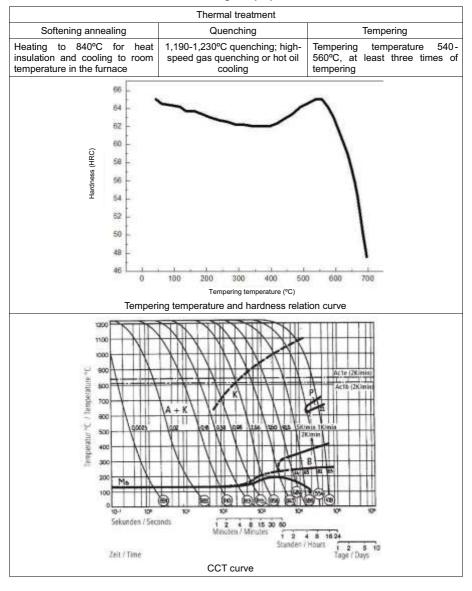

(1) Delivery under balling annealing state, delivery hardness ≤269HB.

Supply specification:

Product name	Specification
Round bar	Ø2.5-257.125mm

HIGH SPEED STEEL

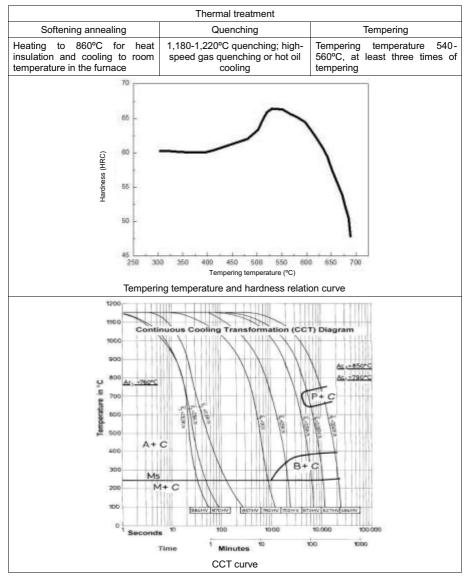
Steel grade (M3)


Steel grade (M4)

Smelting met	nod: 15T in	termediat	e frequei	ncy furnad	e +LF+\	/D+E	SR			
Main characte M4 is high-sp hardness and	eristics: eed tool ste	el of tung	isten and	l molybde				nadium. I	t has hi	gh
Major applica	ions:									
♦ Turning, tools, rea		nd slottin	g tools,	spiral dril	ls, threa	d drill	ling, contou	r cutting	tools,	broaching
Chemical con	stituent %:									
С	Mn	W	Cr	Мо	V	Co	P		S	
1.33	0.40	5.60	4.15	4.60	3.95	-	≤0.028	3 ≤(0.010	
Physical prop	erty:	·						÷		
Room		ific heat		thermal	Ela		Linea	ar expan	sivity (×	10 ⁻⁶ K)
temperatur density (Kg/m ³)	temp	room erature ′Kg·K)		uctivity /m•K)	mod (N/r	ulus nm²)	20~2	00°C	20~	400°C
7.97		40	2	20	226	000	10	.4	1	1.3
Ultrasonic flav As per SEP19			requirem	ients.						I
Purity:										
Clas	s A		Class B			Class	s C		Class I	D
Fine	Coarse	Fine	e (Coarse	Fine		Coarse	Fine		Coarse
0.5	0.5	0.5		0.5	0.5		0.5	1.0		0.5
Delivery state (1) Delivery u Supply specif	nder balling	annealin	g state, i	delivery h	ardness	≤2691	HB.			
							0 1			
		ict name					Specif			
	Rou	ind bar					Ø15~1	60mm		

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (M4)



Steel grade (M7)

Sm	elting i	method:	15T interm	ediate	freque	ency furna	ace +LF+\	/D+ES	R				
		acteristi											
			tool steel o ce, favorabl									ole hardne	SS,
Ма	jor app	lications	s:										
¢		ng, chip reamer	ping and s s.	lotting	tools,	spiral dr	ills, threa	d drilli	ng, contou	r cutti	ng tool	s, broachi	ing
Chemical constituent %:													
C Si Mn W Cr Mo V Co P S 2020 2025 2020 1020<													
0.98 0.35 0.3 1.80 4.00 8.50 1.90 - ≤0.028 ≤0.010													
Ph	ysical p	property	:										
Room Specific heat of 20°C thermal Elastic Linear expansivity (×10 ⁻⁶ K)													
temperature room conductivity modulus 20~200°C 20~400°C													
density temperature (W/m•K) (N/mm²) 20 200 0 20 400 0 (Kg/m³) (J/Kg·K) (N/m•K) (N/mm²) (N/mm²) (N/mm²)													
	8.3		0.46			19.0	217,	000	12.5	5		13.2	
Ult	rasonic	flaw de	etection:										
As	per SE	P1921	D/d or custo	omer re	equirer	ments.							
Pu	rity:												_
		Class	A		Class	в		Class	С		Class	s D	
	Fin	е	Coarse	Fine)	Coarse	Fine)	Coarse	Fir	ne	Coarse	
	0.5	5	0.5	0.5		0.5	0.5		0.5	1.	0	0.5	
	livery s							-0001					
• •			r balling anr	nealing	state,	delivery	nardness	≤269F	IB.				
Su	pply sp	ecificati					1						
			Product n						Specif				
			Round b	ar					Ø15~	80mm			
Round bar Ø15~80mm													

Steel grade (M7)

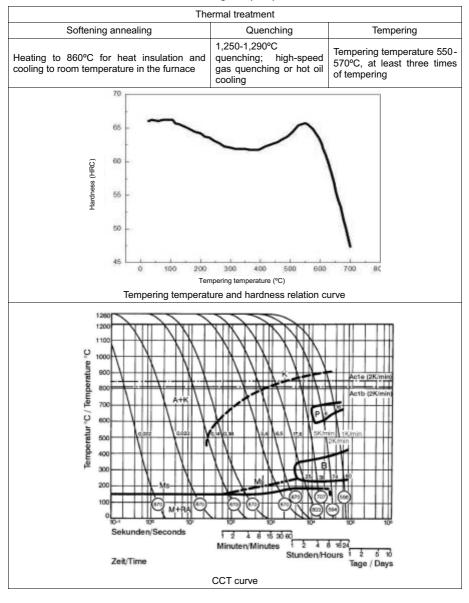
Steel grade (W18)

Sn	nelting i	method	I: 15T intern	nediate	freq	uency furna	ace +LF+\	/D+ES	R					
W		gh-spe	tics: ed tool stee nance, favor										ce	
Ma ∻	tools, reamers.													
Ch	Chemical constituent %:													
C Si Mn W Cr Mo V Co P S														
0.78 0.35 0.30 17.95 4.15 ≤0.30 1.10 - ≤0.028 ≤0.010														
Physical property:														
	Ro	om	Specific h	eat of	20	0℃ thermal	Elas	stic	Linear	expan	sivity (×10 ⁻⁶ K)		
	tempe den (Kg		roon tempera (J/Kg	ature	C	onductivity (W/m•K)	modi (N/n	ulus nm²)	20~20	0°C	20-	~400°C		
	8.7	70	0.46	6		19.0	217,	000	11.1	1		11.7		
			etection: D/d or cust	omer re	quir	rements.								
Pu	rity:													
		Class	A		Cla	ss B		Class	С		Clas	s D		
	Fine	(Coarse	Fine		Coarse	Fine	(Coarse	Fine		Coarse		
	0.5	5	0.5	0.5		0.5	0.5		0.5	1.	0	0.5		
	elivery s) Delive		er balling an	nealing	stat	te, delivery	hardness	≤269⊦	IB.					

PRODUCTION PROCESS:

EAF→LF→VD→ESR→BLOOM IN FOLLOWING MACHINE : QUICK FORGING (12.5MN), HAMMER, PRECISION FORGING

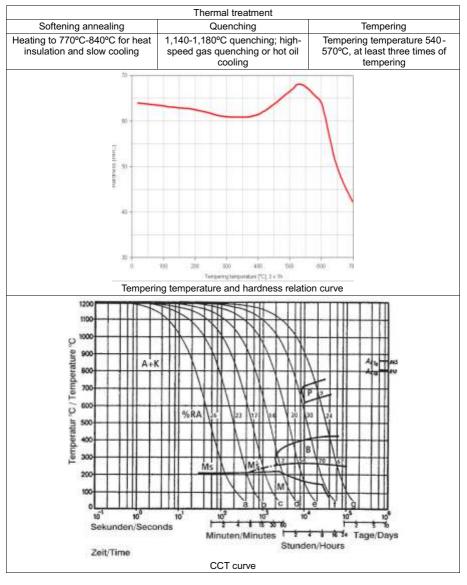
→ Precision Forging : \$\overline{0}\$ 81-255mm Hot Rolled & Annealed Peeled : \$\overline{0}\$ 14.5-80.0mm Cold Drawn / Sand Blasted (Coil) : \$\overline{0}\$ 2.0-13.5mm Cold Draw / Centreless Ground : \$\overline{0}\$ 2.0 -14.4mm


SIZE : Rounds

Cold Drawn/Centre	less Ground Bar	Но	ot Rolled Annealed Pee	led	Forged Bar & Turn	ed	Coil
Ф 2.0 - 1	4.4mm	014.5-80.0mm			Ф81.0-255.0m	m Ф2.0) - 13.5mm
SIZE : Flats		SIZE : Square SIZ			ZE : Sheets		
Thickness	Width		4mm to 100mm		Thickness	Width	Length
5mm-150mm	5mm-810mm	I		0	.5mm to 12mm	810mm	2500mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (W18)


Steel grade (M52S)

Smelting metho	d· 15T int	ormodiat	o froquonev	furnaco	-1 E-		CD					
Main characteri		enneulai	enequency	lumace	TLFT	VDTE	SR					
High-sulfur high	-speed st	eel, extre	emely high n	naterial s	surfac	e finer	ness, cor	ivenien	t for cuttir	ig and high		
Major applicatio	ns:											
♦ Applicable	to pagoda	a drills (st	epped drills) and oth	ner dri	lling b	it produc	ts.				
Chemical const	ituent %:											
C Si	Mn	W	Cr	Мо	,	V	Co		Р	S		
0.90 0.29	0.30) 1.1	2 3.97	4.27	1.	83	0.027	7	≤0.028	0.10		
Physical proper	ty:				1							
Room	Specif	ic heat	2000 th ar		E la	-41-	Li	near ex	pansivity	(×10 ⁻⁶ K)		
temperature		oom	20°C ther conductive			istic Iulus				, ,		
density		erature	(W/m•l	K)	(N/I	mm²)	20	~200°C	2 2	0~400°C		
(Kg/m³) (J/Kg·K) (W/IIIK) (N/IIIII) 8.01 460 19.00 217,000 10.8 11.6												
	-		19.00		217	,000		10.0		11.0		
Ultrasonic flaw As per SEP192			requirement	s								
Purity:		dotornor	i oqui omoni	0.								
A A		F	3			С			D			
(Sulfide)		kide)			icate)			(Cyclic o	oxide)		
	arse	Fine	Coarse	Fin	· ·		oarse	Fi	ne	Coarse		
		0.5	0.5	0.5			0.5	1	.0	0.5		
Delivery state:												
(1) Delivery und	er balling	annealin	g state, deli	very har	dness	s ≤269	HB.					
Supply specific	ation:											
	Produ	ct name					Sp	ecificat	ion			
	Rou	nd bar					Ø1	3~120r	nm			
Supply specification: Product name Specification Round bar Ø13~120mm												

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Steel grade (M52S)

POWDER STEEL SERIES PRODUCT CATALOGUE TPM330 TPM380 TPM558 TPM638 TPM5511 TPM6711 TPMD41A TPMM4 TPMM4S TPMM42 Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance. www.tgkssl.com

POWDER METALLURGY

- 33 -

POWDER STEEL SERIES

COMPARISON TABLE

	тg												
No.	Grade	Bohler	Erasteel	Crucible	ASSAB	Carpenter	AISI/DIN /JAP			Мо	Cr		Co
1	TPMM35						M35	0.92	6	4.9	4.2	1.9	4.8
2	TPMM2						M2	0.9	6.1	4.9	4	1.83	-
3	TPMM3						M3	1.06	6.1	6	4	2.5	-
4	TPM330	S790	ASP2023				M3-2	1.3	6.4	5	4.1	3	-
5	TPMM4	S690	ASP2004					1.45	5.5	4.9	4.1	3.9	-
6	TPMM4S	S690	ASP2004					1.4	5.5	4.85	4.1	3.9	+S
7	TPMM42			CPM Rex M42				1.1	1.35	9.4	3.85	1.1	7.95
8	TPM638	S590	ASP2030	CPM Rex 45				1.3	6.4	5	4.2	3.1	8.5
9	TPM555		ASP2015	CPM Rex T15				1.63	12	0.25	4.25	4.75	5
10	TPM539						M48	1.54	9.6	5.1	3.8	3	9.2
11	TPM558	S390	ASP2052					1.6	10.4	2	4.8	5	8
12	TPM5511	S290						2	14.3	2.5	3.8	5.1	11
13	TPM5610					Maxamet		2.15	13	0.45	4.75	6	10
14	TPM692	K340						2.47	0.9	3.9	4.25	8.85	1.9
15	TPM380		ASP2053					2.48	4.2	3.1	4.2	8	-
16	TPM6711		ASP2060					2.3	6.5	7	4.2	6.5	10.5
17	TPMB43		ASP2005					1.5	2.5	2.5	4.2	4	-
18	TPMB13							0.55	-	3	4.15	1	-
19	TPMB31			CPM 3V				0.81	-	1.35	7.75	2.8	-
20	TPMB32						SB-WEAR	1.16	1.25	1.6	7.8	2.45	-
21	TPMB44			CPM 4V				1.4	-	3.5	4.7	3.7	-
22	TPMB91			CPM 9V				1.83	-	1.35	5.25	8.7	-
23	TPMB101S			CPM 10V				2.5	-	1.3	5.25	9.35	-
24	TPMD21							2.78	-	1.1	25	2.5	-
25	TPMD31				ELMAX			1.7	-	1	18	3	-
26	TPMD41A	M390						1.9	0.6	1	20	4	-
27	TPMD91			CMP S90V				2.36	-	1.06	14.23	8.62	-

Steel Grade (TPM330)

CHEMICAL COMPOSITION

С	Cr	w	Мо	v	
1.3	4.10	6.40	5.00	3.00	

PRODUCTION DESCRIPTION

TPM330 has fine carbide particles, even distribution and good toughness.

Applications: cold-worked parts, rollers, extrusion dies and high performance cutting tools.

SIZE SUPPLIED

Product	Round (mm)	Plate (mm)	
Wire Rolled Forged	Ф 3.2-320	200 x 503	

DELIVERY CONDITION

Typical soft annealed hardness is under 260HB.

MICROSTRUCTURE

- 1. The carbides are fine and even distribution; the carbide size is 5um (The average size of 3 grain large carbides under 10 fields of view under 1000X, the maximum value is not greater than 5um).
- 2. The inhomogeneity of eutectic carbide is not more than grade 1.

ULTRASONIC INSPECTION

According to SEP1921- E/e standard According to GB/T6402-2008 standard grade 4 According to customer requirements

PURITY

Тур	e A	Тур	e B	Тур	e C	Тур	be D
Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
0	0	1.0	0.5	1.0	0.5	1.0	0.5

PHYSICAL PROPERTIES

- 1. Density (p) : 8.1g/cm³
- 2. Modulus of Electricity (E)KN/mm²

Temperature/°C	25	400	600
E	230	205	184

3. Thermal Conductivity $(\lambda)W/(m \cdot K)$

Temperature/°C	25	400	600
λ	24	28	27

4. Thermal Expansions $(\alpha_m) \times (10^{-6}/^{\circ}C)$

Temperature/°C	25	400	600
λ	24	28	27

5. Specific Heat (c) J/KG.°C)

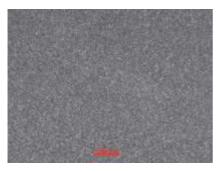
Temperature/°C	25	400	600
С	420	510	600

SOFT ANNEALING

Soft annealing in a protective atmosphere at 860 $^{\circ}C$ -900 $^{\circ}C$ for 3~5h, followed by slow cooling at 10 $^{\circ}C$ /h down to 500 $^{\circ}C$, then air cooling.

STRESS RELIEF ANNEALING

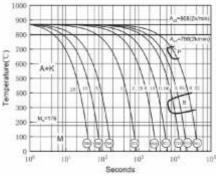
Stress-relieving at 750°C ~ 800°C for approximately 2h, then air cooling.


Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Steel Grade (TPM330)

MICROSTRUCTURE

TPM330 is the 3rd - generation gas - atomized powder, which is completed by HIP, then formed by forging.


Inhomogeneity of Eutectic Carbide: Level 0

Large Grain Carbide Size : 3.5um

CCT CURVE

COMPARATIVE PROPERTIES

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel Grade (TPM558)

CHEMICAL COMPOSITION

С	Cr	W	Мо	V	Со
1.6	4.8	10.4	2.0	5.0	8.0

PRODUCTION DESCRIPTION

TPM558 is high alloy steel, high wear resistance, high, red hardness.

Applications: Heavy machining tools (not only for the processing of steel, but also for the processing of non-ferrous metal such as nickel base and titanium); hobs, slotting cutter, milling knives, complicated cutter, threaded cutter, etc.

SIZE SUPPLIED

Product	Round (mm)	Plate (mm)
Rolled Forged	Ф 22.320	200 x 503

DELIVERY CONDITION

Typical soft annealed hardness is under 300HB.

MICROSTRUCTURE

- The carbides are fine and distribution; the carbide size is 5um (The average of size of 3 grain large carbides under 1000X, the maximum value is not greater than 5um).
- 2. The inhomogeneity of eutectic carbide is not more than grade 1.

ULTRASONIC INSPECTION

According to SEP1921- E/e standard According to GB/T6402-2008 standard grade 4 According to customer requirements

PURI	IT						
Тур	e A	Тур	e B	Тур	e C	Тур	be D
Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
0	0	1.0	0.5	1.0	0.5	1.0	0.5

PHYSICAL PROPERTIES

- 1. Density (p) : 8.1g/cm³
- 2. Modulus of Electricity (E)KN/mm²

Temperature/°C	25	400	600
E	254	218	196

3. Thermal Conductivity $(\lambda)W/(m \cdot K)$

Temperature/°C	25	400	600
λ	20.96	23.80	23.01

4. Thermal Expansions $(\alpha_m) \times (10^{-6})^{\circ}C)$

Temperature/°C	25	400	600	
(a _m)	10.32	10.99	11.49	

5. Specific Heat (c) J/KG.°C)

Temperature/°C	25	400	600	
С	420	510	600	

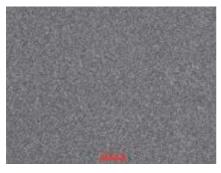
SOFT ANNEALING

Soft annealing in a protective atmosphere at 860 $^{\circ}C$ -900 $^{\circ}C$ for 3~5h, followed by slow cooling at 10 $^{\circ}C$ /h down to 500 $^{\circ}C$, then air cooling.

STRESS RELIEF ANNEALING

Stress-relieving at 750°C ~ 800°C for approximately 2h, then air cooling.

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.


Steel Grade (TPM558)

STRESS RELIEF ANNEALING

Stress-relieving at 750°C~800°C for approximately 2h, then air cooling.

MICROSTRUCTURE

TPM558 is the 3rd - generation gas atomized powder, which is completed by HIP, then formed by forging.


Inhomogeneity of Eutectic Carbide: Level 0

Large Grain Carbide Size : 3.5um

CCT CURVE

COMPARATIVE PROPERTIES

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Steel Grade (TPM638)

DIIDITV

CHEMICAL COMPOSITION

С	Cr	W	Мо	V	Со
1.3	4.2	6.4	5.0	3.1	8.5

PRODUCTION DESCRIPTION

TPM638 is high wear resistance, high compressive strength under high hardness, and good hardenability.

Applications: high performance cutting tools, such as end mills, hobs, planers, etc.

SIZE SUPPLIED

Product	Round (mm)	Plate (mm)
Wire Rolled Forged	Ф 3.2-320	200 x 503
Product	Round (mm)	Plate (mm)

DELIVERY CONDITION

Typical soft annealed hardness is under 300HB.

MICROSTRUCTURE

- 1. The carbides are fine and distribution; the carbide size is 5um (The average of size of 3 grain large carbides under 10 fields of view under 1000X, the maximum value is not greater than 5um).
- 2. The inhomogeneity of eutectic carbide is not more than grade 1.

ULTRASONIC INSPECTION

According to SEP1921- E/e standard According to GB/T6402-2008 standard grade 4 According to customer requirements

Тур	e A	Тур	e B	Тур	e C	Тур	be D
Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
0	0	1.0	0.5	1.0	0.5	1.0	0.5

PHYSICAL PROPERTIES

- 1. Density (p) : 8.1g/cm³
- 2. Modulus of Electricity (E)KN/mm²

Temperature/°C	25	400	600
E	240	214	192

3. Thermal Conductivity $(\lambda)W/(m \cdot K)$

Temperature/°C	25	400	600	
λ	30.97	33.10	31.64	

4. Thermal Expansions $(\alpha_m) \times (10^{-6}/^{\circ}C)$

Temperature/°C	25	400	600	
(a _m)	10.42	11.06	11.36	

5. Specific Heat (c) J/KG.°C)

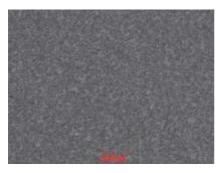
Temperature/°C	25	400	600	
С	420	510	600	

SOFT ANNEALING

Soft annealing in a protective atmosphere at 860 $^{\circ}C$ -900 $^{\circ}C$ for 3~5h, followed by slow cooling at 10 $^{\circ}C$ /h down to 500 $^{\circ}C$, then air cooling.

STRESS RELIEF ANNEALING

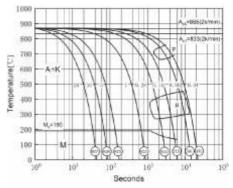
Stress-relieving at 750°C ~ 800°C for approximately 2h, then air cooling.


Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel Grade (TPM638)

MICROSTRUCTURE

TPM638 is the 3rd - generation gas - atomized powder, which is completed by HIP, then formed by forging.


Inhomogeneity of Eutectic Carbide: Level 0

Large Grain Carbide Size : 3.5um

CCT CURVE

COMPARATIVE PROPERTIES

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel Grade (TPM6711)

CHEMICAL COMPOSITION

С	Cr	W	Мо	V	Со
2.30	4.2	7.0	6.5	6.5	10.5

PRODUCTION DESCRIPTION

TPM6711 has small carbide particles and uniform distribution, which is a good substrate for PVD and CVD.

Applications: end milling, bearing and other parts, broach, tap, cold working tools, drill, etc.

SIZE SUPPLIED

Product	Round (mm)	Plate (mm)
Wire Rolled Forged	Ф 3.2~300	255 x 510

DELIVERY CONDITION

Typical soft annealed hardness is under 340HB.

MICROSTRUCTURE

- The carbides are fine and distribution; the carbide size is 5um (The average of size of 3 grain large carbides under 10 fields of view under 1000X, the maximum value is not greater than 5um).
- 2. The inhomogeneity of eutectic carbide is not more than grade 1.

ULTRASONIC INSPECTION

According to SEP1921- E/e standard According to GB/T6402-2008 standard grade 4 According to customer requirements

PURITY									
Тур	e A	Тур	e B	Тур	e C	Тур	be D		
Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick		
0	0	1.0	0.5	1.0	0.5	1.0	0.5		

PHYSICAL PROPERTIES

- 1. Density (p) : 8.1g/cm³
- 2. Modulus of Electricity (E)KN/mm²

Temperature/°C	25	400	600
E	250	222	200

3. Thermal Conductivity $(\lambda)W/(m \cdot K)$

Temperature/°C	25	400	600
λ	24	28	27

4. Thermal Expansions $(\alpha_m) \times (10^{-6}/^{\circ}C)$

Temperature/°C	25	400	600
(a _m)	10	10.6	11.1

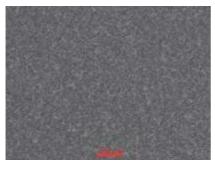
5. Specific Heat (c) J/KG.°C)

Temperature/°C	25	400	600
С	420	510	600

SOFT ANNEALING

Soft annealing in a protective atmosphere at 860 $^{\circ}C$ ~900 $^{\circ}C$ for 3~5h, followed by slow cooling at 10 $^{\circ}C$ /h down to 500 $^{\circ}C$, then air cooling.

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

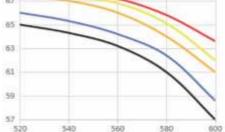

Steel Grade (TPM6711)

STRESS RELIEF ANNEALING


Stress-relieving at 750°C~800°C for approximately 2h, then air cooling.

MICROSTRUCTURE

TPM6711 is the 3rd - generation gas atomized powder, which is completed by HIP, then formed by forging.


Inhomogeneity of Eutectic Carbide: Level 0

Large Grain Carbide Size : 3.5um

GUIDELINES FOR HARDENING

CCT CURVE

COMPARATIVE PROPERTIES

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TG D-2 (DIN-1.2379)

Steel Properties : 12% ledeburitic chromium steel. Maximum wear resistance, good toughness. Best cutting-edge endurance and resistance to tempering, can be nitrided after special heat treatment

Applications: Thread rolling rolls and thread rolling dies, cold extrusion tools, cutting and stamping tools for sheet thicknesses up to 6mm, precision cutting tools up to 12 mm. Cold pilger mandrels, circular-shear blades, deep-drawing tools. pressure pads and highly resistant plastic moulds. E.S.R. materials, high compression strength and fine robustness. The spheroical annealed make it easily processed by shearing and cutting with no crake while processing. Applied in thickness no less than 2mm punch mould, all kind of small mould for shearing and cutter together with screw rolled or slappered mould as well as some other forming mould like rulers.

Similar Steel Grade :

BRAZIL	AUSTRIA	GER	MANY	SLOVANIA	ITALY		JAPAN		S.KORIA	CHEZ.REP
VILLARES	BOHLER	DEW	GRODITZ	RAVNE	LUCCHINI	HITACHI	NIPPON	SANYO	DOOSAN	POLDI
VD2	K110	1.2379	1.2379	OCR12VM	DUYOS2379	SLD	KD11V	QC11	STD 11	2002K

Chemical Composition: (%)

Indian		Chemical Analysis Typical Value % (Min - Max)								Delivery (Condition		
IS	С	S	Ρ	Si	Mn	Ni	Cr	Мо	V	W	other	Heat Treatment	Hardness
XT8W6M05Cr4V2	1.45- 1.60	≤0.03	≤0.03	0.10- 0.60	0.20- 0.60	***	11.0- 13.0	0.70-	0.70- 1.00	***	***	Annealed	≤Hb255

PRODUCTION PROCESS:

- Forged Annealed Turned : 0 81-1000mm $EAF \rightarrow LF \rightarrow VD \rightarrow ESR \rightarrow BLOOM IN$ ANNEALED Hot Rolled & Annealed Peeled : 0 14.5-80.0mm FORGED (5TONS HAMMER) CONDITION Flat Bar: FORGED \rightarrow HOT ROLLED (850) \rightarrow ANNEALED CONDITION - (5TONS HAMMER) $EAF \rightarrow LF \rightarrow VD \rightarrow$ HOT ROLLED (910) UT STANDARD: **REDUCTION RATIO:** SEP 1921. (DEC.84)E/e As 1:4 or 1:5

DELIVERY STATUS :

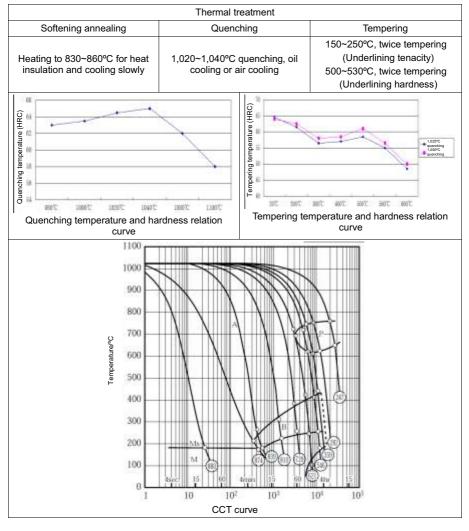
As Hot rolled & forged, delivery condition : Annealed

SIZE : Rounds

Cold Drawn/Centreless Ground Bar	Hot Rolled Annealed & Peeled	Forged Annealed Turned
Ф 2.0-14.4mm	¢14.5-80.0mm	Ф81.0-1000mm

SIZE	1	F	lats
------	---	---	------

	iuto
Width	ess
	5mm-810mm


Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

SIZE · Shoots

The Name You Can Trust

Steel grade (TG D-2 (DIN-1.2379)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TG D-3 (DIN-1.2080)

Steel Properties: Ledeburitic - high - carbon high - chromium tool steel, very high wear-resistance.

Applications : Tools for cutting sheets up to 4mm thickness, trimming dies, blanking dies for paper and plastics, long- and round-section shear blades for sheet thicknesses up to 2 mm, drawing and deep drawing tools. Woodworking tools, stone pressing tools, pressure pads and highly wear-resistant plastic moulds, profile rolls.

Similar Steel Grade :

CHINA	AUSTRIA	GERMANY	SLOVANIA	JAPAN	CHEZ REP
TG	BOHLER	DEW	RAVNE	SANYO	POLDI
D3	K100	1.2080	OCR12	QC1	2002

Chemical Composition: (%)

Indian		Chemical Analysis Typical Value % (Min - Max)										Delivery 0	Condition
IS	С	S	Ρ	Si	Mn	Ni	Cr	Мо	V	W	other	Heat Treatment	Hardness
XT8W6M05Cr4V2	1.90- 2.20	≤0.02	≤0.03	0.10- 0.40	0.15- 0.45	***	11.0- 12.0	***	****	***	***	Annealed	≤Hb250

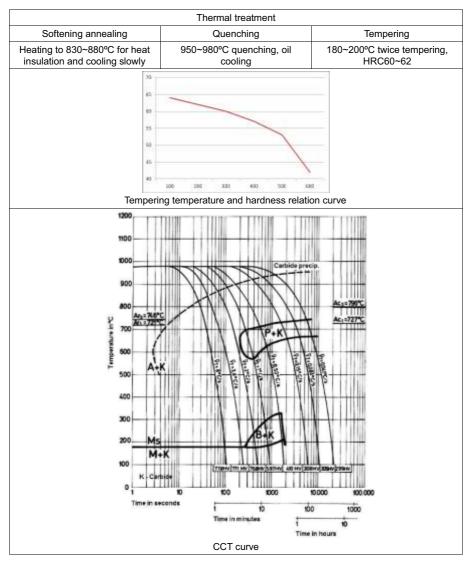
PRODUCTION PROCESS:

Round Bar:

EAF→LF→VD→ESR→(5TONS HAMMER) → Forged Annealed Turned : ⊕ 81-610mm Hot Rolled & Annealed Peeled : ⊕ 14.5-80.0mm Cold Drawn/Centreless Ground : ⊕ 2.0 -14.4mm

Flat Bar:

 $EAF \rightarrow LF \rightarrow VD \rightarrow FORGED \rightarrow HOT ROLLED (910) \rightarrow ANNEALED CONDITION$


UT STANDARD:	REDUCTION RATIO :	DELIVERY STATUS :
SEP 1921, (DEC.84)E/e	As 1:4 or 1:5	In Annealed Condition

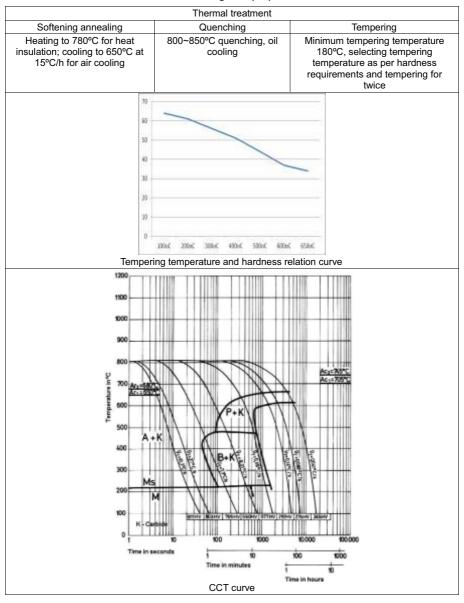
SIZE : Rounds

Cold Drawn/Cen	treless Ground Bar	Hot Rolled Annealed	& Peeled	Forged Annealed Turned				
Ф 2.0-	14.4mm	014.5-80.0mm			Ф81.0-610.0mm			
SIZE : Flats			SIZE : Shee	ets				
Thickness	Width		Thickne	SS	Width	Length		
5mm-150mm	5mm-810mm		0.5mm to		0.5mm to 12mm		810mm	2500mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TG D-3 (DIN-1.2080)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.



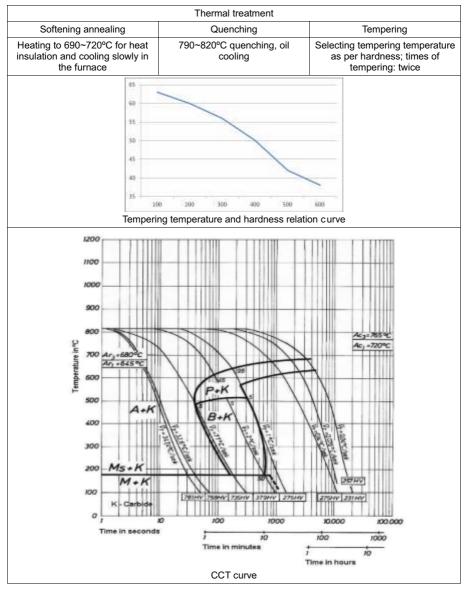
Steel grade (O1)

Smelting method:	(1) EA	F +LF+V[D; (2) electi	ic arc f	urnace +L	F+VD	+ESR		
Main characteristic									
Favorable therma									
favorable machinir				ion unc	ler harder	ning, a	s well as ex	ctremely high	gh hardness
and relatively high	enacity	on suna	ces.						
Major applications:	outting	aald are	oping and		toolo				
 ♦ Widely used in ♦ Applicable to a 						orina d	lioe		
Chemical constitue		sang, inte	cutting uit	, ouun	s and she	anny c	1165.		
C Si	nt /0.	Mn	Cr	Мс		W	V	Р	S
1.0 0.2		1.1	0.6	≤0.).6	0.1	≤0.030	≤0.010
		1.1	0.0	<u> </u>	5 0	.0	0.1	20.030	20.010
Physical property: Room		h t - f	200°C th		Elast		1	expansivity	(110-612)
temperature	roc	heat of	conduct		modul		Lineare	expansivity	(×10 K)
density	tempe		(W/m	2	(N/mr		20~200°	C 20	~400°C
(Kg/m ³)		(g·K)	(,	(,	20 200	20	, 400 0
7.85	-	-	30		-		12.9		14
Ultrasonic flaw det	ection:		1						J
Electric furnace ste	el: flaw	detectio	n standard	as pe	r SEP192	1- D/d	flaw detect	tion or GB/	T6402-2008
Class 3, or as per									
Electroslag steel: f				er SEF	21921- E/€	e flaw o	detection or	GB/T6402	-2008 Class
4, or as per custon	er requ	irements.							
Purity: Electric furnace ste	alı								
Class A	ei.		Class B		C	ass C		Class	
		Fine	Coar		Fine	Coarse		Fine	Coarse
	arse .0	2.0	1.5		1.5		1.0	1.5	1.5
	.0	2.0	1.0)	1.5		1.0	1.5	1.5
Electroslag steel:					0			0	D
Class A			Class B		-	ass C		Class	S D
	arse	Fine	Coar		Fine	C	oarse	Fine	0
	.5	1.0	1.0)	1.		1.0	1.5	Coarse
Delivery state: (1)								1.0	Coarse 1.0
							220HB;		1.0
(2)	Pearlite	organiza					220HB;		
(2) GB	Pearlite T1299-	organiza					220HB;		1.0
(2) GB Supply specificatio	Pearlite T1299- n:	organiza 2014.	tion shall b	e evalu	uated as (Class 1	220HB; ~5 as per s	standard dra	1.0 awing A.3 in
(2) GB	Pearlite T1299- n:	organiza 2014.	tion shall b	e evalu electric	uated as (Class 1	220HB; ~5 as per s	standard dra	1.0 awing A.3 in
(2) GB Supply specificatio Product name	Pearlite T1299- n: Sup	organiza 2014.	tion shall b fication of steel/mm	e evalu electric	uated as (Class 1	220HB; ~5 as per s oply specific	standard dra cation of ele eel/mm	1.0 awing A.3 in
(2) GB Supply specificatio	Pearlite T1299- n: Sup	organiza 2014.	tion shall b	e evalu electric	uated as (Class 1	220HB; ~5 as per s oply specific st	standard dra	1.0 awing A.3 in
(2) GB Supply specificatio Product name Forged round ba	Pearlite T1299- n: Sup	organiza 2014. oply speci	fication of steel/mm Φ70~300 Φ16~70	e evalu electric	furnace	Class 1	220HB; ~5 as per s oply specific str \$	standard dra cation of ele eel/mm 70~300 116~70	1.0 awing A.3 in ectroslag
(2) GB Supply specificatio Product name Forged round ba Rolled round ba	Pearlite T1299- n: Sup	organiza 2014. oply speci	tion shall b fication of steel/mm Φ70~300 Φ16~70 5~120)* (20	electric	furnace	Class 1 Suj	220HB; ~5 as per s oply specific str \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	standard dra cation of ele eel/mm 70~300 016~70 20)* (200~8	1.0 awing A.3 in ectroslag
(2) GB Supply specificatio Product name Forged round ba Rolled round ba Rolled flat bar	Pearlite T1299- n: Sup	organiza 2014. oply speci	tion shall b fication of steel/mm Φ70~300 Φ16~70 5~120)* (20 Small flat s	electric)))))))))))))))))))	furnace	Class 1 Suj	220HB; ~5 as per s oply specific str \$	standard dra cation of ele eel/mm 70~300 016~70 20)* (200~8	1.0 awing A.3 in ectroslag

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (O1)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.


Steel grade (O2)

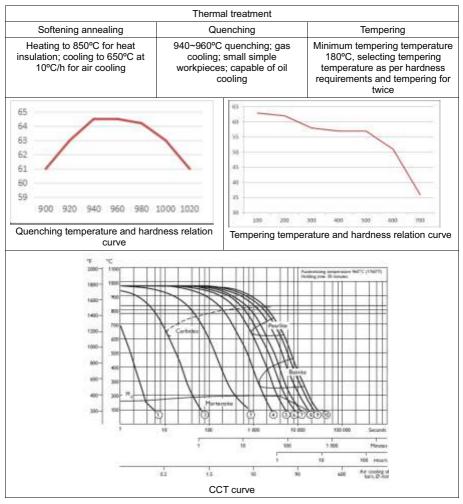
Physical property: Specific heat of room 200°C thermal conductivity Elastic modulus (N/mm ²) Linear expansivity (×10° ⁶ K) density density (Kg/m ³) Specific heat of room 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm ²) Linear expansivity (×10° ⁶ K) 7.85 460 30 210,000 13.3 14.3 Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-200 Class 3, or as per customer requirements. Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Cla 4, or as per customer requirements. Purity: Electric furnace steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 2.0 1.5 1.0 1.5 1.5 Electroslag steel: Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 2.0 1.5 1.5 1.5 1.5 Electroslag steel: Class B Class C Class D Class D <th>Smelting me</th> <th>ethod: (1) E</th> <th>AF+LF+VD</th> <th>; (2) electric</th> <th>arc fu</th> <th>urnace</th> <th>+LF+V</th> <th>D+ESR</th> <th></th> <th></th> <th></th>	Smelting me	ethod: (1) E	AF+LF+VD	; (2) electric	arc fu	urnace	+LF+V	D+ESR				
performance and medium abrasion performance. Major applications: Mainy used for producing outling tools and cutting blades; Mainy used for producing cutting tools, cold shearing blades; screw cutting tools, etc. Chemical constituent %: C Si Mn Cr Mo Mo V V												
Major applications:♦ Mainly used for production of measuring implements;♦ Used for producing woodworking tools and cutting blades;♦ Mainly used for producing cutting tools, cold shearing blades;♦ Mainly used for producing cutting tools, cold shearing blades, screw cutting tools, etc.Chemical constituent %:CSiNameMnCSiNameNamePhysical property:RoomSpecific heatof roomconductivitydensitytemperatureof roomconductivity(Kg/m³)(J/Kg·K)7.8546030210,00013.314.3Ultrasonic flaw detection:Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-200Class 3, or as per customer requirements.Purity:Electric furnace steel:Class AClass BClass CClass DFineCoarseCoarseFineCoarseFineCoarseFineCoarseFineCoarseCoarseFineCoarseFineCoarse <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>itment,</td><td>quite h</td><td>high crack res</td><td>sistanc</td><td>e, high</td><td>n machinin</td></tr<>						itment,	quite h	high crack res	sistanc	e, high	n machinin	
 Used for producing woodworking tools and cutting blades; Mainly used for producing cutting tools, cold shearing blades, screw cutting tools, etc. Chemical constituent %: C Si Mn Cr Mo W V P S 0 0 25 2.0 0.35 0.1 ≤0.030 ≤0.010 Physical property: Room Specific heat 200°C thermal conductive modulus (N/mm²) (Kg/m³) (J/Kg·K) (Kg/m³) (J/Kg·K) (Kg/m³) (J/Kg·K) (Kg/m³) (J/Kg·K) (W/m·K) (N/mm²) T.85 460 30 210,000 13.3 14.3 Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-2008 Clas 3, or as per customer requirements. Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Cla 4, or as per customer requirements. Purity: Electroslag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 1.5 1.5 Electroslag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1. 1.0 Delivery state: (1) delivery under annealing state, delivery hardness \$220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric Supply specification of electroslag steel/mm Forged round Φ70~300 Φ70~300 Rolled round bar Φ16~70 Φ16~70 Rolled round bar Φ16~70 Malf flat steel Small flat steel of various specifications with thickness under 30mm 				•								
♦ Mainly used for producing cutting tools, cold shearing blades, screw cutting tools, etc. Chemical constituent %: C Si Mn Cr Mo W V P S 0. 0 25 2.0 0.35 - 0.1 ≤0.030 ≤0.010 Physical property: Room Specific heat 200°C thermal conductivity (N/mr ²) (Kg/m ³) (J/Kg·K) 7.85 460 30 210,000 13.3 14.3 Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-200 Class 3, or as per customer requirements. Electrois flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-200 Class 3, or as per customer requirements. Electrois flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class 4, or as per customer requirements. Electrois furnace steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 1.5 1.5 Electrois gateel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 1.5 1.5 Electrois lag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.5 1.5 1.0 1.5 1.5 Electrois lag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.5 1.5 1.5 Electrois lag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse	♦ Mainly	used for pro	duction of	measuring ir	nplen	nents;						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{tabular}{ c c c c c c c } \hline C & Si & Mn & Cr & Mo & W & V & P & S \\ \hline 0. & 0 & 25 & 2.0 & 0.35 & - & - & 0.1 & \le 0.030 & \le 0.010 \\ \hline Physical property: & & & & & & & & & & & & & & & & & & &$	♦ Mainly	used for pro	ducing cut	ting tools, co	old sh	earing l	olades,	screw cutting	g tools,	etc.		
0.0252.00.350.1<0.030<0.010Physical property:Room temperature densitySpecific heat of room temperature (Kg/m ³)Specific heat of room (J/Kg·K)200°C thermal conductivity (W/m·K)Elastic modulus (N/mm ²)Linear expansivity (×10°K)7.8546030210,00013.314.3Ultrasonic flaw detection:Electric furnace steel: flaw detection standard: as per SEP1921-Class 3Class 8Class CClass 0FineCoarseFineCoarseFineCoarseClass AClass BClass CClass DFineCoarseFineCoarse1.01.51.51.01.5Electroslag steel:Class AClass BClass CClass DFineCoarseFineCoarseClass AClass BClass CClass DFineCoarseFineCoarse1.01.01.01.0O1.01.01.0O1.01.01.0Class AClass BClass CClass DFineCoarseFineCoarse1.01.01.01.0O0.51.51.01.0<	Chemical co	onstituent %	:									
Physical property:Specific heat of room temperature densitySpecific heat of room temperature200°C thermal conductivity (W/m·K)Elastic modulus (N/mm²)Linear expansivity (×10°K) 20~200°C20~400°C 20~400°C7.8546030210,00013.314.3Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-200 Class 3, or as per customer requirements.Electric furnace steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class 4, or as per customer requirements.Purity: Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class 0 4, or as per customer requirements.Class BClass CClass DFineCoarseFineCoarseFineCoarseCoarse1.51.02.01.51.51.01.51.5Electroslag steel:Class BClass CClass DClass DFineCoarseFineCoarseFineCoarse1.51.01.01.01.1.01.0Delivery state: (1) delivery under annealing state, delivery hardness <220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014.Supply specification of electric furnace steel/mmSupply specification of electroslag steel/mmProduct nameSupply specification of electric furnace steel/mmSupply specification of electroclase furnace steel/mmSupply specification of electroclase steel/mmProduct name<	С	Si	Mn	Cr	Ν	/lo	W	V		Р	S	
$\begin{array}{ c c c c c c } \hline Room temperature of room temperature of room temperature of room temperature (W/m+K) (W/m+K) (N/mm^2) \\ \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.	0 25	2.0	0.35		-	-	0.1	≤0	.030	≤0.010	
temperature density (Kg/m³)of room temperature (W/m*K)conductivity (W/m*K)modulus (N/mm²)20~200°C20~400°C7.8546030210,00013.314.37.8546030210,00013.314.3Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-200 Class 3, or as per customer requirements. Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Cla 4, or as per customer requirements.Purity: Electric furnace steel:Class BClass CClass DClass AClass BClass CClass DFineCoarseFineCoarseFineCoarse1.51.02.01.51.51.01.51.5Electroslag steel:Class BClass CClass DClass DFineCoarseFineCoarseFineCoarse1.00.51.51.01.01.1.0Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014.Supply specification:Product name furnace steel/mmSupply specification of electroslag steel/mmForged round 	Physical pro	operty:										
density (Kg/m³)temperature (J/Kg·K)(W/m•K)(N/mm²)Lo 1000Lo 10007.8546030210,00013.314.3Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-20Class 3, or as per customer requirements. Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class 3, or as per customer requirements.Purity: Electroic furnace steel:Class AClass BClass CClass DFineCoarseFineCoarseFineCoarse1.51.02.01.51.51.01.51.5Electroslag steel:Class AClass BClass CClass DFineCoarseFineCoarseFineCoarse1.51.02.01.51.01.51.5Electroslag steel:Class AClass BClass CClass DFineCoarseFineCoarseFineCoarse1.00.51.51.01.01.01.0Delivery state: (1) delivery under annealing state, delivery hardness <220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014.Supply specification:Product nameSupply specification of electric furnace steel/mmSupply specification of electroslag steel/mmForged round bar $\Phi70~300$ $\Phi70~300$ $\Phi70~300$ Rolled flat bar(12~70)*(200~610)(12~120)*(200~810)Sm								Linear	expar	nsivity ((×10⁻⁰K)	
(Kg/m³)(J/Kg·K)(Link b)(Link b)7.8546030210,00013.314.3Ultrasonic flaw detection:Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-20Class 3, or as per customer requirements.Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 ClasOutput:Electric furnace steel:Class AClass BClass CClass DFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarse<							-	20~200°	2	20~4	00°C	
7.8546030210,00013.314.3Ultrasonic flaw detection:Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-20Class 3, or as per customer requirements.Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Cla 4, or as per customer requirements.Purity: Electric furnace steel:Class AClass BClass DClass AClass BClass DFineCoarseFineCoarseFineCoarseFineCoarseClass AClass BClass DElectroslag steel:Class AClass BClass DClass BClass DFineCoarseFineCoarseFineCoarseFineCoarseFineCoarseFineCoarse <td cols<="" td=""><td></td><td></td><td></td><td>(VV/m•ł</td><td>()</td><td>(N</td><td>/mm⁻)</td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td>(VV/m•ł</td> <td>()</td> <td>(N</td> <td>/mm⁻)</td> <td></td> <td></td> <td></td> <td></td>				(VV/m•ł	()	(N	/mm ⁻)				
Ultrasonic flaw detection: Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-20 Class 3, or as per customer requirements. Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Cla 4, or as per customer requirements. Purity: Electric furnace steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 2.0 1.5 1.5 1.0 1.5 1.5 Electroslag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 2.0 1.5 1.5 1.0 1.5 1.5 Electroslag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1. 1.0 1.0 1. 1.0 Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric Supply specification of electroslag furnace steel/mm Forged round Φ70~300 Φ70~300 Rolled flat bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm) (.	v ,	30		21	0 000	13 3	2		1/1 3	
Electric furnace steel: flaw detection standard: as per SEP1921- D/d flaw detection or GB/T6402-20 Class 3, or as per customer requirements. Electroslag steel: flaw detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Cla 4, or as per customer requirements. Purity: Electric furnace steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.5 1.0 2.0 1.5 1.5 1.0 1.5 1.5 Electroslag steel: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric Supply specification of electroslag furnace steel/mm Forged round Φ70~300 Φ70~300 Dar Rolled flat bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm				50		21	0,000	15.0)		14.5	
$\begin{tabular}{ c c c c c c } \hline Class A & Class B & Class C & Class D \\ \hline Fine & Coarse & Fine & Coarse & Fine & Coarse & Fine & Coarse \\ \hline 1.5 & 1.0 & 2.0 & 1.5 & 1.5 & 1.0 & 1.5 & 1.5 \\ \hline I.5 & I.0 & 2.0 & I.5 & I.5 & I.0 & I.5 & I.5 \\ \hline Electroslag steel: & & & & \\ \hline Class A & Class B & Class C & Class D \\ \hline Fine & Coarse & Fine & Coarse & Fine & Coarse & Fine & Coarse \\ \hline 1.0 & 0.5 & 1.5 & 1.0 & 1.0 & 1.0 & 1. & 1.0 \\ \hline Delivery state: (1) delivery under annealing state, delivery hardness $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Electroslag 4, or as per	steel: flaw c	etection st	andard: as p	er SE	EP1921	- E/e fla	aw detection	or GB/	T6402-	-2008 Clas	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Electric furn	ace steel:										
1.51.02.01.51.01.51.5Electroslag steel:Class AClass BClass CClass DFineCoarseFineCoarseFineCoarse1.00.51.51.01.01.01.0Delivery state: (1) delivery under annealing state, delivery hardness <220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014.Supply specification:Product nameSupply specification of electric furnace steel/mmSupply specificationForged round barRolled round bar $\Phi70~300$ $\Phi16~70$ $\Phi16~70$ Rolled flat bar $(12~70)^* (200~610)$ Small flat steelSmall flat steel of various specifications with thickness under 30mm	Cla	ass A		Class B			Class	s C		Class	s D	
Electroslag steel:Class AClass BClass CClass DFineCoarseFineCoarseFineCoarse1.00.51.51.01.01.01.01.0Delivery state: (1) delivery under annealing state, delivery hardness <220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014.Supply specification:Product nameSupply specification of electric furnace steel/mmSupply specification of electroslag steel/mmForged round bar $\Phi70~300$ $\Phi70~300$ $\Phi70~300$ Rolled round bar $\Phi16~70$ $\Phi16~70$ $\Phi16~70$ Rolled flat bar $(12~70)^* (200~610)$ $(12~120)^* (200~810)$ Small flat steelSmall flat steel of various specifications with thickness under 30mm										-	Coarse	
Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric furnace steel/mm Supply specification of electroslag steel/mm Forged round Φ70~300 Φ70~300 Φ70~300 bar Rolled round bar Φ16~70 Φ16~70 Rolled flat bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm	-		2.0	1.5	5	1.	5	1.0	1.5	5	1.5	
Fine Coarse Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric furnace steel/mm Supply specification of electroslag steel/mm Forged round Φ70~300 Φ70~300 Φ70~300 bar 0 0.16~70 0.16~70 Rolled round bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm	Electrosla	g steel:										
1.0 0.5 1.5 1.0 1.0 1.0 1.0 Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric furnace steel/mm Supply specification of electroslag steel/mm Forged round bar Φ70~300 Φ70~300 Rolled round bar Φ16~70 Φ16~70 Rolled flat bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm	Cla	ass A		Class B			Class	s C		Class	s D	
Delivery state: (1) delivery under annealing state, delivery hardness ≤220HB; (2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric furnace steel/mm Forged round Φ70~300 bar Rolled round bar Φ16~70 Rolled flat bar (12~70)* (200~610) Small flat steel Small flat steel of various specifications with thickness under 30mm	-		-	Coar	se	Fir	ie	Coarse	Fin	е	Coarse	
(2) Pearlite organization shall be evaluated as Class 1~5 as per standard drawing A.3 GB/T1299-2014. Supply specification: Product name Supply specification of electric furnace steel/mm Forged round bar Φ70~300 Rolled round bar Φ16~70 Rolled flat bar (12~70)* (200~610) Small flat steel Small flat steel of various specifications with thickness under 30mm	-						-		1.		1.0	
Product name Supply specification of electric furnace steel/mm Supply specification of electroslag steel/mm Forged round bar Φ70~300 Φ70~300 Rolled round bar Φ16~70 Φ16~70 Rolled flat bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm		(2) Pear GB/T12	lite organiz						stand	ard dra	wing A.3 ir	
Forged round bar Φ70~300 Φ70~300 Rolled round bar Φ16~70 Φ16~70 Rolled flat bar (12~70)* (200~610) (12~120)* (200~810) Small flat steel Small flat steel of various specifications with thickness under 30mm							-					
bar Φ16~70 Rolled round bar Φ16~70 Rolled flat bar (12~70)* (200~610) Small flat steel Small flat steel of various specifications with thickness under 30mm	Pro	duct name					Su			electro	oslag	
Rolled flat bar(12~70)* (200~610)(12~120)* (200~810)Small flat steelSmall flat steel of various specifications with thickness under 30mm	For	•		Φ70~300				Φ7(0~300			
Small flat steel Small flat steel of various specifications with thickness under 30mm	Rolle	d round bar		Φ16~70	5			Ф1	6~70			
	Roll	led flat bar	((12~70)* (20	0~61	0)		(12~120)	* (200	~810)		
	Sma	all flat steel	Small	flat steel of v					ess und	der 30r	nm	
Sheet metal Sheet metal with thickness under 10mm	Sh	eet metal		Shee	t met	al with	thickne	ss under 10m	nm			

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (O2)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

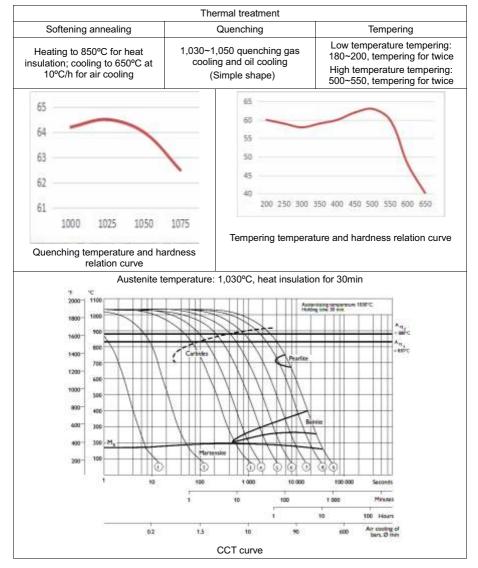
Steel grade (A2) 1.2363


					Steel grade	(AZ) 1.23	63				
Smelt	ing metl	nod: (1) EA	F+LF+VI	D; (2) electric arc	furnace +	LF+V	D+ESR			
-	characte										
					el, certain i						
		cooling que		Imer	sion deformation	ation, eve	n and	d small ca	rbides, fa	avorable	tenacity
	applica		ance.								
			curlina d	lies a	and embossir	na dies:					
		dies and co				. j ,					
♦ A	brasive	plastic formi	ng dies;	-							
♦ C	Cutting to	ools.									
Chem	ical con	stituent %:	r			1					
	С	Mn	Cr		Mo	W		V	Р		S
1	.0	0.7	5.1		1.15	-		0.3	≤0.03	0 ≤	0.010
Physic	cal prop	erty:									
	_		1					1			- 6
	Room perature	Specifi e of ro			0°C thermal onductivity	Elast modu			ar expans		,
	lensity	tempe			(W/m•K)	(N/m		20~2	00°C	20~4	00°C
	Kg/m ³)		g·K)		(**/111-13)	(19/11)	,				
	7.7	460).5		26	203,0	00 12.9) 13.8		
Ultras	onic flav	w detection:									
					andard: as p	er SEP19	21- D	/d flaw dei	tection or	r GB/T64	102-2008
	,	per custom									
Electro	oslag st	eel: flaw det ustomer requ	ection sta	anda	rd: as per SE	:P1921- E	/e flav	w detection	or GB/1	6402-20	08 Class
Purity		ric furnace s		.							
Tunty	Clas			Clas	ss B	(Class	С		Class D	
Fi	ine	Coarse	Fine		Coarse	Fine	71055	Coarse	Fine		oarse
	.5	1.0	2.0		1.5	1.5		1.0	1.5		1.5
	troslag s		2.0		1.0	1.0		1.0	1.0		1.0
	Clas			Clas	ss B	(Class	С		Class D	
Fi	ine	Coarse	Fine		Coarse	Fine		Coarse	Fine		oarse
1	.0	0.5	1.5		1.0	1.0		1.0	1.5	-	1.
Delive	erv state	: (1) delivery	under a	nnea	ling state, de	liverv har	dness	≤245HB.			
	y specif	., .				,					
Γ	Produc		Supply	spec	cification of el	ectric	Sup	oly specific	ation of e	electrosla	ad
			furnace					l/mm			
	Forged	Forged round bar Φ70~200 Φ70~513									
Rolled round bar Φ16~70 Φ16~70											
	Rolled	flat bar	(12~7	70)* (200~61	0)		(12~120)* (200~8	310)	
	Small f	lat steel			eel of various	specifica	tions	with thickn	ess unde	r 30mm	
			and wid	lth o	f 150mm						
	She	et metal			Sheet me	tal with thi	cknes	s under 10	Omm		

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.


Steel grade (TGX6) DC53

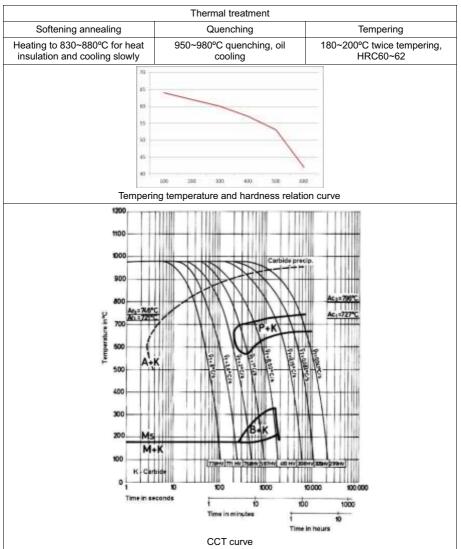
Smelting method: (1) EAF+LF+VD; (2) electric arc furnace +LF+VD+ESR												
Main charact Relatively hi improved coa	gh tenaci							reatment	dimen	sion	deformation,	
processi	ised for p ng, stampi automobi	ng dies of e covered	old pressing various appli piece molds wire drawing	icatior : inlai	ns, etc d mold	s of ke	ey par	0	d cutti	ng of	line cutting	
Chemical constituent %:												
C Si Mn Cr Mo W V P S												
0.93												
Physical property:												
Room Specific heat 200°C thermal Elastic Linear expansivity (×10 ⁻⁶ K)												
density (Kg/m ³)	ensity temperature c			∕ity <)		odulus I/mm²)		20~200	°C	20	0~400°C	
7.85		0.45	20.5		21	8,000	,000 11.9 12.3			12.3		
Electric furna B, or as per c Electroslag s as per custor Purity: Electric furna	customer r teel: flaw c ner require	equiremen letection s	ts.									
Clas			Class B			Cla	ss C			Clas	۶D	
Fine	Coarse	Fine		rse	Fi	ne	1	oarse	Fin		Coarse	
1.5	1.0	2.0	1.	5	1	.5		1.0	1.5	;	1.5	
Electroslag	steel:		I		1							
Clas	ss A		Class B			Clas	ss C			Clas	s D	
Fine	Coarse	Fine	e Coa	rse	Fi	ne	Co	oarse	Fin	е	Coarse	
1.0	0.5	1.5	i 1.(C	1	.0		1.0	1.5	5	1.0	
Delivery state: (1) Delivery hardness: delivery under annealing state, ≤255HB; (2) Unevenness of eutectic carbide shall comply with BÖHLER standard;												
Supply specif						1						
Ro	und steel		Flat	steel				Ν	/lodule	•		
Φ1	~310mm		12~120×20	00~66	0mm			120~150	×300~	-600m	m	

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Steel grade (TGX6) DC53

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.



Steel grade (A8M)

a							-,			
0		()	AF+LF+VD); (2) EAF	+LF+	VD+ES	R			
Main chara										
compressi			ing, stror	ig nardeni	ing, i	nign ai	orasion	performance	e and e	xtremely high
Major appl										
♦ Bearir	ig sma	all impac	ct load du	iring manu	factur	ring, hig	ghly res	istant cold p	ounching,	cold shearing
		sleeves, Ier dies.	gages, v	vire drawin	g die	s, screv	v plates	, drawing di	es, screw	thread rolling
Chemical of	constitu	uent %:								
С	S	Si	Mn	Cr	Ν	Ло	W	V	Р	S
2.05	0.2	25	0.3	11.5		-	-	-	≤0.030	0 ≤0.010
Physical p	roperty	:								
Roon	1	Specifi	c heat of	Room	n	Ela	astic	Linear	expansivi	ty (×10 ⁻⁶ K)
tempera			om	temperat			dulus	20~200	0°C	20~400°C
densi			erature	therma	-	(N.	/mm²)			
(Kg/n	۱ [°])	(J/	Kg·K)	conducti	-					
7.67		4	60	(W/m• 20	'N)	21(0,000	12.0		12.9
Ultrasonic				20		21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.0		12.0
4, or as pe Electric fur	r custo	mer req				1 1321	L/e na			02-2008 Class
C	lass A		(Class B			Class	С	Cl	ass D
Fine	С	oarse	Fine	Coa	rse	Fin	е	Coarse	Fine	Coarse
1.5		1.0	2.0	1.5	5	1.	5	1.0	1.5	1.5
Electrosla	ng stee	l:								
С	lass A		(Class B			Class	С	CI	ass D
Fine	С	oarse	Fine	Coa		Fin	-	Coarse	Fine	Coarse
1.0		0.5	1.5	1.(•	1.0		1.0	1.5	1.0
Delivery st				s: delivery				e, ≤255HB; h BÖHLER s	standard.	
Supply spe	cificati	ion:								
P	roduct	name	Suppl	y specificat	tion of	f electric	: Sup	ply specificat	tion of ele	ctroslag
				furnace ste	eel/m	m		stee	l/mm	J
Fo	rged ro	und bar		Ф70~5	500			Ф70	~550	
F	orged n	nodule	(1	(120~200)* (300				(120~350)	* (300~81	10)
		und bar		Ф16~70 Ф16~70						
F	colled fl	lat bar								
S	mall fla	at steel	Small	flat steel of	f vario		cification dth of 1	s with thickn 50mm	ess unde	r 30mm
	Shoot r									
	Sheeri	metal		She	eet me	etal with	thickne	ss under 10	mm	

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (A8M)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (S7 (SIHARD 2357 Steel)

Description: S7 is a general purpose air hardening tool steel having high impact and sock resistance. it has good resistance to softening at moderately high temperatures. This combination of properties makes it suitable for many hot-work and cold-work applications.

Applications : Chisels, rivet sets, punches, driver bolts. Hot punching and shearing.

Physical properties (average values) at ambient temperature : Density [gcm³] : 7.86

Equivalent Grades

TG	RAVNE	MAT. NO.	DIN	EN	AISI/SAE
S7	OH253	1.2357	50CrMoV13-1		S7

Chemical Composition (in weight%)

С	Si	Mn	Cr	Мо	Ni	V	W	Others
0.50	0.50	3.25	3.25	1.50		0.25		

Coefficient of Linear Thermal Expansion 10⁻⁶ °C⁻¹

20-100°C	20-200°C	20-300°C	20-400°C	20-500°C	20-600°C	20-700°C
11.7	12.9	13.3	13.8	14.1	14.3	14.6

Soft Annealing : Heat 810-850°C, cool slowly in furnace. This will produce a maximum brinell hardness of 229.

Stress Relieving: To Relieve machining stresses for greater accuracy in hardening - first rough machine, then anneal below the critical 649/677°C a minimum of one hour at temperature and cool slowly, then finish machine.

Hardening: Harden from a temperature 930-960°C followed by air or oil quenching. Hardness after quenching is 59-61 HRC.

Tempering : Tempering temperature: 150-400°C

Tempering Temperature(°C) vs. Hardness (HRC)

100°C	200°C	300°C	400°C	500°C	550°C	600°C	650°C
59	57	54	53	52	52	48	41

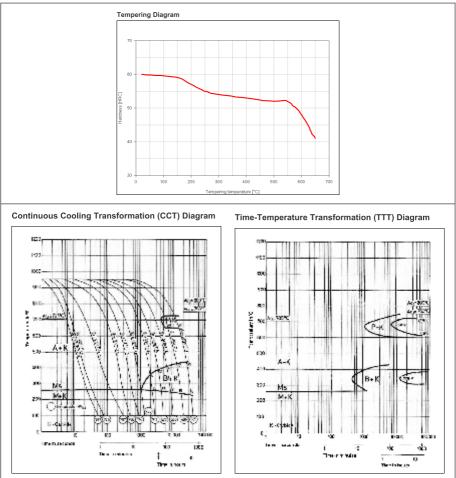
Forging Hot forming temperature : 1060-1121°C

Machinability :

The machinability of S7 alloy may be rated at about 75/80 % of a 1% carbon tool steel.

Corrosion Resistance :

Corrosion resistance of this alloy is better than that of plain carbon steels. However it will rust unless given protective treatment.


Forms manufactured : Please see Dimensional Sales Programe.

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Disclaimer: The information and data presented herein are typical or average value and are not a guarantee of maximum or minimum values. Applications specify suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. These is no representation that the recipient of this literature will receive updated editions as the become available.

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (1.2767)											
Smelting p	roces	ss: (1)) EAF+LF+	VD, (2) E	AF+LF	=+VD	D+ESR				
Main char Nickel colo good polis	d wo	rk too	ol steel is c	characteriz nd anti cor		•		-	l tou	ghnes	ss;
 Main application: Hot-forging die for metal processing and tool for extrusion; Molds with various shapes and dimensions; Mold, axis sleeve, core rod, etc. 											
Chemical	com	npone	ent %:								
С	S	Si	Mn	Cr	Мо	b	Ni	V	F	>	S
0.45	0.	35	0.35	1.35	0.2	5	4.05	≤0.1	≤0	.03	≤0.03
Physical	prop	erty:									
Density a room	at	•	cific heat t room	Heat conductiv	vity		asticity odulus				inear 0⁻⁰K)
temperati (Kg/m³)			perature /Kg·K)	at the temperat of 2000 (W/m•K	t ure C	(N/mm²)		20~200 ℃		2 0~400 °	
7.84			-	28			-	12.5			13.4

Ultrasonic flaw detection:

Electric furnace steel: detection standard: conduct flaw detection according to SEP1921-D/d grade, conduct grade assessment of 3 levels according to GB/T6402-2008 or conduct flaw detection according to clients' requirements.

Electro slag steel : detection standard: flow detection shall conform to SEP1921-E/e grade, conduct grade assessment of 4 levels according to GB/T6402-2008 or conduct flaw detection according to clients' requirements.

Degree of purity:

Electric furnace steel:

Cla	ss A	Cla	ss B	Cla	ss C	Class D				
Fine series	Rough series	Fine series	Rough series	Fine Rough series series		Fine series	Rough series			
1.5	1.0	2.0	1.5	1.5	1.0	1.5	1.5			
Cla	ss A	Cla	ss B	Cla	ss C	Class D				
Fine	Rough	Fine	Rough	Fine	Rough	Fine	Rough			
series	series	series	series	series	series	series	series			
1.0	0.5	1.5	1.0	1.0	1.0	1.5	1.0			
Electro-sla	Electro-slag steel:									
Delivery sta	Delivery state: (1) delivery under annealing conditions, annealing hardness ≤260 HB.									

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (1.2767)

Specification of supply:					
Round bar	module				
≤500mm	Thickness ≤300mm, width ≤800mm				

Heat tr	eatment	
Softening annealing	Quenching	Tempering
Heat to 610° C to 850° C, carry out heat preservation and cooling in furnace	Hardening temperature is 840°C to 870°C, carry out air cooling	Select tempering temperature as per clients' requirement
Image: Constraint of the second se		T Curve

Steel grade (TSFD2)

Smelting Method: Intermediate Frequency Furnace \rightarrow Ladle Furnace \rightarrow Vacuum Degassing \rightarrow Spray Forming

Main Features: High purity, small size and uniform distribution of carbides, high hardenability, small deformation in heat treatment, good toughness, excellent wear resistance, and long service life.

Main application:

- Long-life precision cold stamping die, cold shear die, thread rolling die, imprinting die;
- · Precision measuring tools, such as advanced gauges;
- · Long-life cold heading mold;
- Roller steel and parts with high segregation requirements.

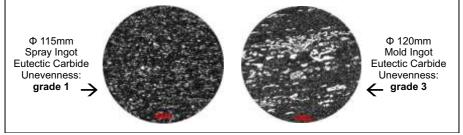
Chemical Component wt. %:

С	Si	Mn	Cr	Мо	W	V	Р	S
1.5	0.35	0.4	12.0	0.75	-	0.75	≤0.03	≤0.015

Physical property:

Density at (Kg/m³)	Specific Heat (J/Kg·K)	Thermal Conductivity at 200°C (W/m•K)	Elasticity Modulus (N/mm²)		nt of linear n (×10 ⁻⁶ K) 20~400℃
7.70	450	20	210000	11.3	12.1

Ultrasonic Flaw Detection:

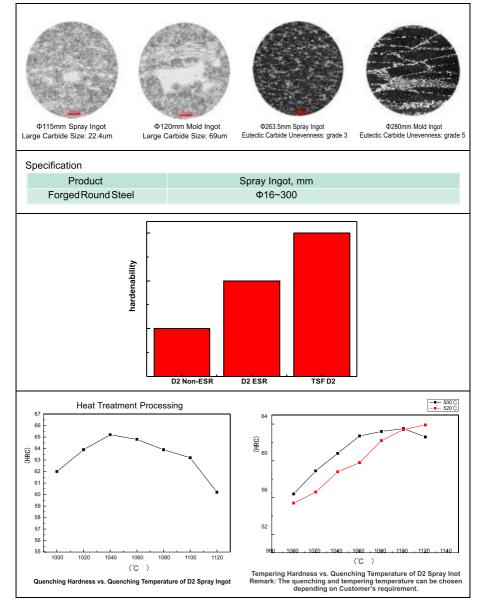

Flaw Detection Standard: according to SEP 1921-E/e level of flaw detection and GB/T6502-2008 level 4 of assessment or upon customer-specific requirements.

Cleanlineness

Cla	ss A	Class B		Cla	ss C	Class D		
Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick	
1.5	1.0	2.0	1.5	1.5	1.0	1.5	1.0	

Delivery Status:

- Delivery in annealed state, hardness ≤ 255HB.
- The inhomogeneity of eutectic carbide is less than or equal to grade 2 or grade 3 for respectively diameter ≤ 200mm or for diameter ≤ 300mm.



Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Steel grade (TSFD2)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Steel grade (TSFDC53)

Smelting Method: Intermediate Frequency Furnace (15ton) → Ladle Furnace → Vacuum Degassing → Spray Forming

Main Features:

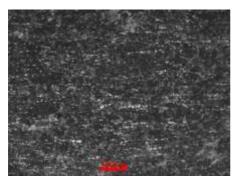
Improve coarse carbides, small size deformation of heat treatment, high toughness, high wear resistance, superior processing performance.

Main application:

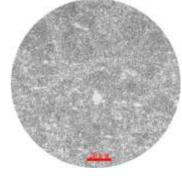
- Precision cold stamping des: precision blanking for wire cutting, stamping dies for various purposes;
- · Long-life automobile panel mold: insert molds for key parts;
- Trimming, hemming, wire drawing, thread rolling die.

Chemical Component wt. %:

С	Si	Mn	Cr	Мо	W	V	Р	S
0.93	0.95	0.40	7.8	1.90	-	0.25	≤0.03	≤0.010


Ultrasonic Flaw Detection:

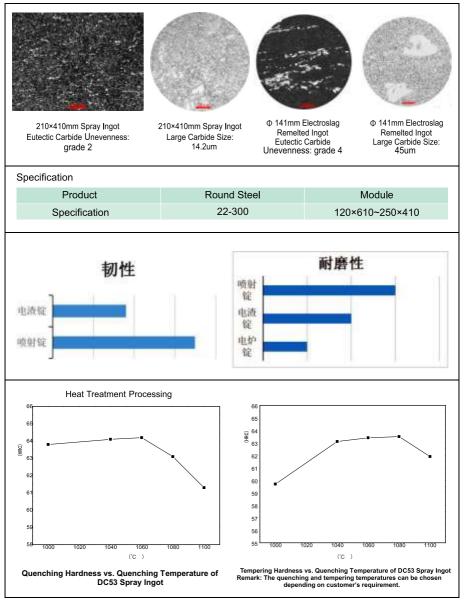
Flaw Detection Standard: according to SEP 1921-E/e level of flaw detection and GB/T6502-2008 level 4 of assessment or upon customer-specific requirements.


Cleanlinen	less						
Cla	ss A	Cla	ss B	Cla	ss C	Cla	ss D
Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
1.5	1.0	2.0	1.5	1.5	1.0	1.5	1.0

Delivery Status:

- Delivery in annealed state, hardness ≤ 255HB.
- The inhomogeneity of eutectic carbide is less than or equal to grade 2 or grade 3 for respectively diameter ≤ 200mm or for diameter ≤ 300mm.

Φ241mm Spray Ingot Eutectic Carbide Unevenness: grade 1.5


Φ241mm Spray Ingot Large Carbide Size: 11.7um

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Steel grade (TSFDC53)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Steel grade (TG H-13 DIN-1.2344) & (TG H-13M DIN-1.2345)

Steel Properties: High hot-wear resistance, high hot tensile strength and toughness. Good thermal conductivity and insusceptibility to hot cracking. Can be water-cooled to a limited extent.

Applications: Hot-work tool steel for universal use. Pressure casting dies and metal extrusion tools for processing light metals, forging dies, moulds, screws and barrels for plastic processing, nitrided ejectors, hot-shear blades. Suitable for Aluminium Extrusion Die & Aluminium Copper Forging Dies.

H13 has high hard resistance and hardness.

Suitable for Aluminium Extrusion Die, and Aluminium Copper forging Die.

Similar Steel Grade :

1	CHINA	BRAZIL	AUSTRIA	GEF	RMANY	SLOVANIA	ITALY		JAPAI	N	S.KORIA	TAIWAN	CHEZ.REP
	TG	VILLARES	BOHLER	DEW	GRODITZ	RAVNE	LUCCHINI	HITACHI	NIPPON	SANYO	DOOSAN	GLORIA	POLDI
	H13	VH13IM	W302	1.2344	1.2344	UTOP M02-EFS	ESKY0S2344	DAC	KDA	QD61	STD 61	GMH13 (ESR)	TLI EFS

Chemical Composition: (%)

Indian		Chemical Analysis Typical Value % (Min - Max)									Delivery Condition		
IS	С	S	Р	Si	Mn	Ni	Cr	Мо	V	W	other	Heat Treatment	Hardness
H13	0.35- 0.42	≤ 0.030	≤ 0.030	0.80- 1.20	0.25- 0.50	***	4.80- 5.50	1.20- 1.50	0.85- 1.15	***	***	Annealed	≤ HB235
H13M	0.47- 0.52	≤ 0.030	≤ 0.030	0.80- 1.20	0.25- 0.50	***	4.80- 5.50	1.20- 1.50	0.85- 1.15	***	***	Annealed	≤ HB235

PRODUCTION PROCESS:

Round Bar:

Flat Bar:

 $EAF \rightarrow LF \rightarrow VD \rightarrow ESR \rightarrow FORGED \rightarrow HOT ROLLED (850) \rightarrow ANNEALED CONDITION$

UT STANDARD:	REDUCTION RATIO:	DELIVERY STATUS :
SEP 1921, (DEC.84)E/e	As 1:4 or 1:5	In Annealed Condition

SIZE : Rounds

Cold Drawn/Ground Bar	Hot Rolled Annealed & Peeled Bar	Forged + Annealed + Turned Bar
¢ 2.0-14.4mm	014.5-80.0mm	081.0-810.0mm

SIZE : Hot Rolled Flat Bars / Sand Blasted & Machined Straight

Thickness	Width
5mm - 410mm	10mm - 810mm

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TG H-13 DIN-1.2344) (TG H-13M DIN-1.2345)

HEAT TREATMENT CONDITION :

: 1020-1050°C
: air-cooling
: 550-650°C
: 2Times, the tempering temperature in the
second time should be lower than in first time
: 47-48HRC.

Tempering °C	500°C	550°C	600°C
HRC	HRC56	HRC54	HRC50

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TGE13)

Smelting method: EAF+LF+VD+ESR

Main characteristics:

Excellent heat resistance and crack resistance, quite high tenacity, quite high ductility, favorable isotropic, favorable processability and polishability as well as favorable dimension stability during heat treatment.

Major applications:

- For various metal pressure casting molds, for example: automobile engine cylinder body, cylinder cover, gearbox shell molds;
- ♦ Hot extrusion molds, mainly for hot extrusion of aluminum profiles;
- High-quality plastic molds, for example, high abrasion resistance plastic molds for automobiles.

Chemica	l consti	tuent %:						
С	Si	Mn	Cr	Мо	V		Р	S
0.38	0.90	0.35	5.0	1.35	0.95	-	≤0.015	≤0.002
Physical property:								
Room Specific heat 200%		200°C	Ela	stic	Linear expansivity (×10 ⁻⁶ K)			
temper dens (Kg/	sity	of room temperature (J/Kg·K)	e co	thermal nductivity (W/m•K)	mod (N/r	ulus nm²)	20~200°C	20~400°C
7.8	0	430		22	215,	000	11.3	11.9

Ultrasonic flaw detection:

As per SEP1921: E/e flaw detection or GB/T4162 Class AA flaw detection, i.e., flat bottom hole $\leq \Phi$ 1mm, no flaw detection noise wave shall appear or please comply with customer regulations. Purity:

Cla	ss A	Cla	Class B Class C		ss C	Class D		
Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse	
1.0	0.5	1.5	1.0	1.0	1.0	1.5	1.0	

Delivery state:

(1) Delivery hardness: delivery under annealing state, delivery hardness ≤229HB;

(2) Organization state and impact power requirement: the organization and segregation shall comply with North American Die Casting Association No. 207 criterion;

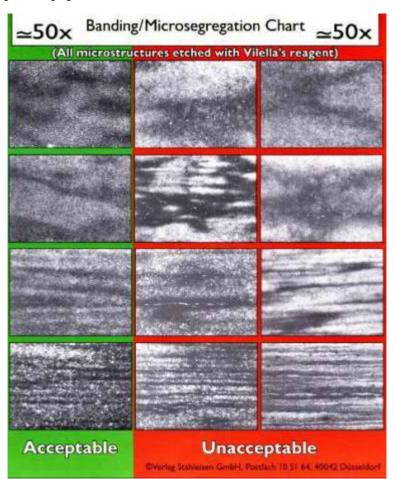
(3) Impact power sample: please sample according to the central part of steel. The samples shall be treated according to criteria in North American Die Casting Association, making sure that hardness of samples at 45±2HRC. Dimension of samples: 7*10*55. Gapless.

Specification (diameter, thickness mm)	Average impact power at the center part not less than (J)	Minimum impact power per sample not less than (J)
>60~300	240	150
>300	180	100


Supply specification:

Specification/mm	Material
Ф70~500	TGE13
(120~400)× (300~800)	TGE13
Ф16~70	TGE13
(12~120)× (200~810)	TGE13
	Φ70~500 (120~400)× (300~800) Φ16~70

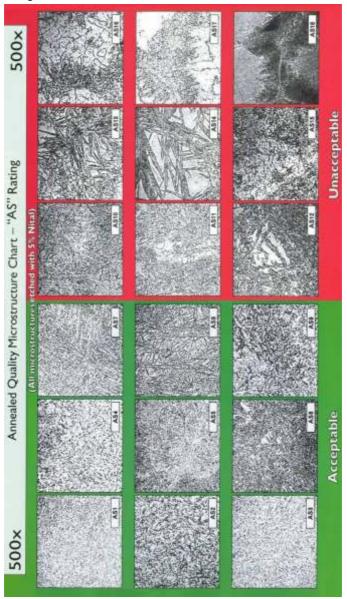
Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.


Steel grade (TGE13) Thermal treatment Tempering Softening annealing Quenching 1020~1040°C quenching; high Heating to 850°C for heat Selecting tempering temperature insulation; cooling to 600°C at speed gas quenching or hot oil according to hardness 10°C/h for air cooling cooling requirements; please conduct tempering for 3 times; prevent tempering under 425~550°C 60

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

NADCA organization evaluation atlas

Banding microsegregation chart



Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

The Name You Can Trust

Balling annealing microstructure chart

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TGGP13)

Smelting method: EAF+LF+VD+ESR

Main characteristics:

High ductility, high thermal fatigue resistance, high thermal erosion resistance, high isotropic property, high purity and small heat treatment distortion.

Major applications:

- Long-life Al, Mg and Zn alloy pressure casting molds, for example: automobile engine cylinder body, cylinder cover, gearbox shell molds.
- ♦ Large-scale hot extrusion molds: for example, aluminum alloy hot extrusion molds for high-speed rails and metros.
- Precise hot forging molds: for example, automobile engine crankshaft and connecting rod molds; gear molds of gear boxes.

С	Chemical constituent %									
	С	Si	Mn	Cr	Мо	V	Р	S		
	0.39	1.1	0.4	5.3	1.45	1.0	≤0.009	≤0.001		

Physical property:

Room	Specific heat	200°C thermal	Elastic	Linear expansivity (×10 K)							
temperature density (Kg/m ³)	of room temperature (J/Kg·K)	conductivity (W/m•K)	modulus (N/mm ²)	20~200°C	20~400°C						
7.80	430	22	215000	11.3	11.9						

Ultrasonic flaw detection:

As per SEP1921: E/e flaw detection or GB/T4162 Class AA flaw detection, i.e., flat bottom hole ≤Φ 1mm, no flaw detection noise wave shall appear or please comply with customer regulations.

Purity:

	Class A		Class B	Clas	ss C	Class D	
Fin	e Coar	se Fine	Coarse	Fine	Coarse	Fine	Coarse
0.5	0.	1.0	0.5	0.5	0	1.0	0.5

Delivery state:

(1) Delivery hardness: delivery under annealing state, delivery hardness ≤229HB;

(2) Organization state and impact power requirement: the organization and segregation shall comply with North American Die Casting Association No. 207 criterion;

(3) Impact power sample: please sample according to the central part of steel. The samples shall be treated according to criterions in North American Die Casting Association, making sure that hardness of samples at 45±2HRC. Dimension of samples: 7*10*55. Gapless.

Specification (diameter, thickness mm)	Average impact power at the center part not less than (J)	Minimum impact power per sample not less than (J)						
>60~300	300	250						
>300	300	200						
Supply specification:								
Product name	Specification/n	nm	Material					
Forged round bar	Ф70~500		TGGP13					
Forged module	(120~400)× (300	0~800)	TGGP13					
Rolled round bar	Ф16~70		TGGP13					
Rolled flat bar	(12~120)× (200	~810)	TGGP13					

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Thermal treatment Tempering Softening annealing Quenching Heating to 850°C for heat 1,020~1,040°C quenching; high Selecting tempering temperature insulation; cooling to 600°C at speed gas quenching or hot oil according to hardness 10°C/h for air cooling cooling requirements; please conduct tempering for 3 times; prevent tempering under 425~550°C -53 - 1048 56 35 Hardness (HRC) Hardness (HRC) 45 -. 40 16 12 30 20 -400 520 520 543 550 560 600 650 1020 -1100 Temperature (°C) Quenching temperature (°C) Tempering temperature and hardness relation Quenching temperature and hardness relation curve curve Austenite temperature: 1,020°C, heat insulation for 30min 15 NC. 2000 1100 1000 1800 A. MPC IIT25'E 900 1650 A, 840°C 0545°E 830 1400 Petadite 700 1200 600 1000 530 800 400 54 650 300 1111 400 200 Martanütz 250 100 0 0 M 91 2 1000 10 000 100 000 Seconds 1 10 100 Minutes 10 100 1000 100 Hours 15

Steel grade (TGGP13)

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.

Air cooling of bars

0 mm

al inch

600

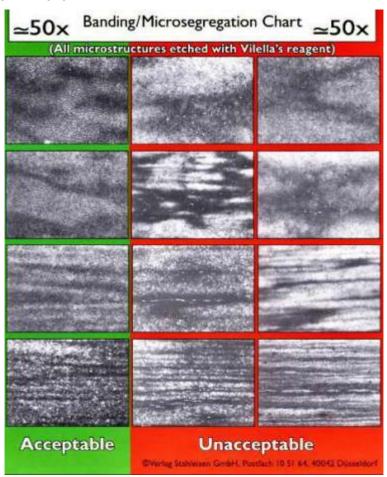
73.6

10.

CCT curve

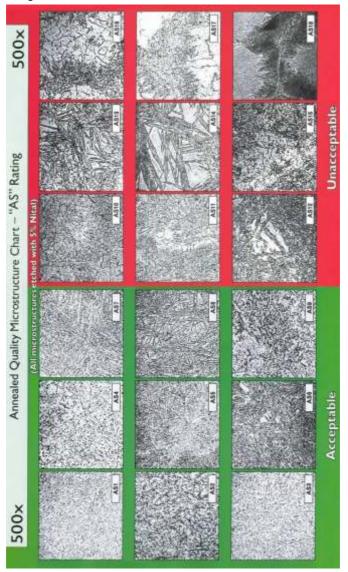
90

3.54


0,2

1,5

NADCA organization evaluation atlas


Banding microsegregation chart

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Balling annealing microstructure chart

Steel grade (TGE23)

Smelting method: EAF+LF+VD+ESR

Main characteristics:

High ductility, high thermal fatigue resistance, high thermal erosion resistance, high isotropic property, high purity and small heat treatment distortion.

Major applications:

- Mainly used for processing of light alloy metal pipes, rods, extruded carrier rods, molds, and extruded molds, etc.
- ♦ Pressure casting equipment, molded trimming die, compression moulding inserts, etc.
- ♦ Hot shearing blades, plastic molds, etc.

Chemical constituent %:

C	Si	Mn	Cr	Мо	V	Р	S
0.37	0.3	0.4	5.0	2.2	0.45	≤0.015	≤ .001

Physical property:

i nyeleai property	<i>.</i>					
Room	Specific heat	200°C thermal	Elastic	Linear expansivity (×10 ⁻⁶ K)		
temperature density	of room temperature	conductivity (W/m•K)	modulus (N/mm ²)	20~200°C	20~400°C	
(Kg/m ³)	(J/Kg·K)	· · · ·	. ,			
7.85	460	29.7	215,000	12	12.5	

Ultrasonic flaw detection:

As per GB/T4162 Class AA flaw detection, i.e., flat bottom hole $\leq \Phi$ 1mm, no flaw detection noise wave shall appear or please comply with customer regulations.

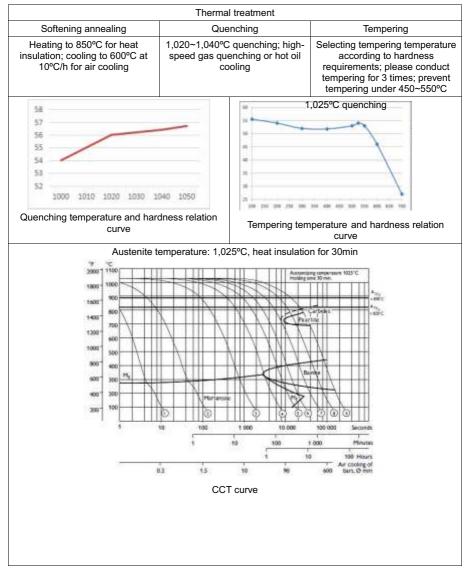
Purity:

Cla	ss A	Cla	ss B	Clas	is C	Class D	
Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse
1.0	0.5	1.5	1.0	1.0	1.0	1.5	1.0

Delivery state:

(1) Delivery hardness: delivery under annealing state, delivery hardness ≤229HB;

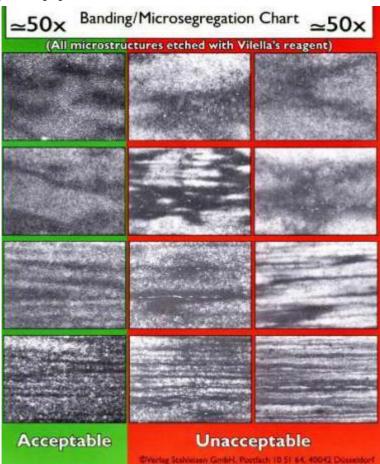
(2) Organization state and impact power requirement: the organization and segregation shall comply with North American Die Casting Association No. 207 criterion;


(3) Impact power sample: please sample according to the central part of steel. The samples shall be treated according to criterions in North American Die Casting Association, making sure that hardness of samples at 45±2HRC. Dimension of samples: 7*10*55. Gapless.

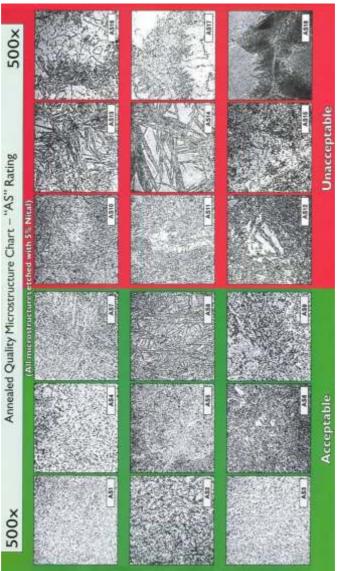
samples at 45121110. Dimension of samples. 7 10 55. Capless.									
Specification (diameter, thickness mm)	Avera	ge impact power at the center part not less than (J)	Minimum impact power per sample not less than (J)						
≥60~200		380	350						
≥201-300		350	300						
≥ 01		300	250						
Supply specification:									
Product name		Specification/m	m Material						
Forged round bar		Ф70~450	TGE23						
Forged module		(120~400)× (300	~800) TGE23						
Rolled round bar		Ф16-70	TGE23						
Rolled flat bar		(12~120)× (200-	-810) TGE23						

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TGE23)



NADCA organization evaluation atlas


Banding microsegregation chart

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Balling annealing microstructure chart

Steel Grage (TG H11 DIN-1.2343) & (TG H11M)

Steel Properties: High hot tensile strength and toughness. Good thermal to hot cracking. Can be water-cooled to a limited extent.

Applications: Hot-work tool steel for universal use. Pressure casting dies and metal extrusion tools for processing light metals, forging dies, moulds, screws and barrels for plastic processing, shrink rings, hot-shear blades.

Similar Steel Grade :

CHINA	BRAZIL	AUSTRIA	GERMANY		SLOVANIA	JAPAN	TAIWAN	CHEZ.REP
TG	VILLARES	BOHLER	DEW	GRODITZ	RAVNE	SANYO	GLORIA	POLDI
H11	TENAX 300	W300	1.2343	1.2343 VICTORY	UTOP M01-EFS	QDA61	GMH11	TLH EFS

Chemical Composition: (%)

Indian		Chemical Analysis Typical Value % (Min - Max)										Delivery Condition	
IS	С	S	Р	Si	Mn	Ni	Cr	Мо	V	W	other	Heat Treatment	Hardness
H11	0.33- 0.41	≤0.030	≤0.030	0.80- 1.20	0.20- 0.50	***	4.80- 5.50	4.70- 5.20	1.10- 1.50	***	***	Annealed	≤Hb235
H11M	0.47- 0.52	≤0.030	≤0.030	0.80- 1.20	0.20- 0.50	***	4.80- 5.50	4.70- 5.20	1.10- 1.50	***	***	Annealed	≤Hb235

PRODUCTION PROCESS:

Round Bar:

EAF→LF→VD→ESR→(5TONS	Forged Annealed Turned	: \$\phi 81-810mm \rightarrow ANNEALED
HAMMER)	\rightarrow Hot Rolled & Annealed Peeled	$\pm \Psi$ 14.5-80.0mm $-$
HAMMER)	Cold Drawn/Centreless Ground	: \$\Phi 2.0 -14.4mm \] CONDITION

Flat Bar:

 $EAF \rightarrow LF \rightarrow VD \rightarrow ESR \rightarrow FORGED \rightarrow HOT ROLLED (850) \rightarrow ANNEALED CONDITION$

UT STANDARD:	REDUCTION RATIO :	DELIVERY STATUS :
SEP 1921, (DEC.84)E/e	As 1:4 or 1:5	In Annealed Condition

SIZE : Rounds

Cold Drawn/Ground Bar	Hot Rolled Annealed & Peeled Bar	Forged + Annealed + Turned Bar
Ф 2.0-14.4mm	¢14.5-80.0mm	Ф81.0-810.0mm

SIZE : Hot Rolled Flat Bars / Sand Blasted & Machined Straight

Thickness	Width
5mm - 410mm	10mm - 810mm

www.tgkssl.com

Steel Grage (TG H11 DIN-1.2343) & (TG H11M)

Heat Treatment Condition	on :			
Quenching temperature	: 1020-105	50°C		
Cooling Medium	: air-coolin	g		
Tempering temperature	: 550-650°	С		
Tempering times	: 2 Times,	the temperir	ng temperature	e in
	the secor	nd time shou	Ild be lower th	an in first time
Tempering Hardness	: 47-48HR	C.		
Tempering °C 5	00ºC	550°C	600°C	
HRC H	RC56	HRC54	HRC50	

Steel grade (TGGP11)

Smelting method: EAF+LF+VD+ESR Main characteristics: Excellent tenacity and ductibility along all direction; high thermal fatigue resistance, favorable polishability, favorable dimension stability and favorable quenching. Major applications: ∻ Pressure casting molds; Hot extrusion molds of aluminum, copper and magnesium ally; ∻ ⊹ High-polishing plastic injection molds. Chemical constituent % Si C Mn Cr Mo V Р S 0.37 10 0.37 52 13 0 45 ≤0 009 ≤0 001 Physical property: Specific heat of 200°C thermal Flastic Linear expansivity (×10⁻⁶K) Room temperature room conductivity modulus 20~200°C 20~400°C density temperature (N/mm^2) (W/m•K) (Kg/m^3) (J/Kg·K) 7.85 460 29.2 215.000 13.4 13.2 Ultrasonic flaw detection: Flaw detection standard: as per SEP1921: E/e flaw detection or class 4 criterion in GB/T6402-2008, i.e., flat bottom hole $\leq \Phi$ 2mm or as per customer requirements.

Purity:

Clas	ss A	Cla	ss B	Cla	ss C	Clas	ss D
Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse
1.0	0.5	1.5	1.0	1.0	1.0	1.5	1.0

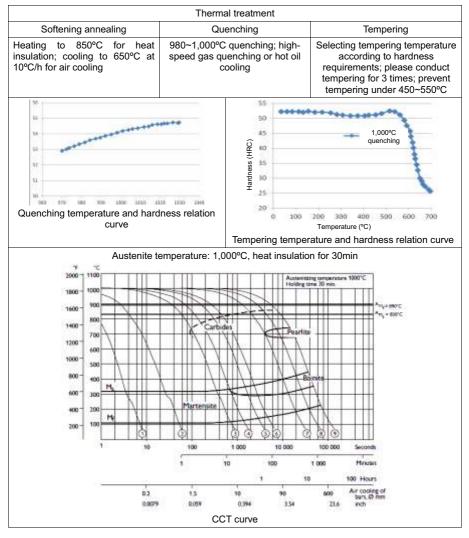
Delivery state:

(1) Delivery hardness: delivery under annealing state, delivery hardness ≤229HB;

(2) Organization state and impact power requirement: comply with North American Die Casting Association No. 207 criterion;

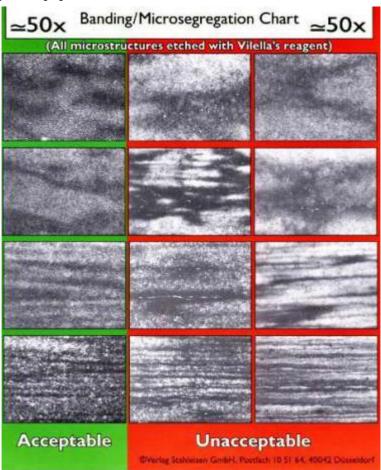
(3) Impact power sample: please sample according to the central part of steel. The samples shall be treated according to criterions in North American Die Casting Association, making sure that hardness of samples at 45±2HRC. Dimension of samples: 7*10*55. Gapless.

Specification (diameter, thickness mm)	Average impact power at the center part not less than (J)	Minimum impact power per sample not less than (J)
>60~250	250	200
>250	220	180

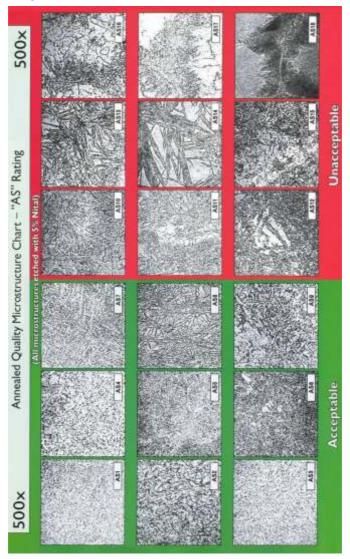

Supply specification:

Product name	Specification/mm	Material
Forged round bar	Φ70-500	TGGP11
Forged module	(120-400)* (300-1,000)	TGGP11
Rolled round bar	Ф16-70	TGGP11
Rolled flat bar	(12-120)* (200-810)	TGGP11

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.


Steel grade (TGGP11)

NADCA organization evaluation atlas


Banding microsegregation chart

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Balling annealing microstructure chart

Steel grade (1.2367 SUP)

Smelting method: EAF+LF+VD+ESR

Main characteristics:

High heat resistance, favorable high-temperature tenacity, high thermal fatigue resistance and abrasion performance, little change in heat treatment size, nitridation treatment, favorable polishability and favorable isotropic.

Major applications:

- ♦ Long-life pressure casting molds;
- ♦ Forged molds and inserts;
- ♦ Hot extrusion molds.

Chemical constituent %:

С	Si	Mn	Cr	Мо	V	Р	S
0.37	0.4	0.45	5.0	2.8	0.55	≤0.015	≤0.001

Physical property:

Γ	Room	Specific heat of	200°C thermal	Elastic	Linear expan	sivity (×10 ⁻⁶ K)
	temperature density (Kg/m3)	room temperature (J/Kg⋅K)	conductivity (W/m•K)	modulus (N/mm2)	20~200°C	20~400°C
	7.83	-	25.0	215,000	12	12.5

Ultrasonic flaw detection:

Flaw detection standard: as per Class A of GB/T4162, i.e., flat bottom hole $\leq \Phi$ 2mm, or as per customer requirements.

Purity:

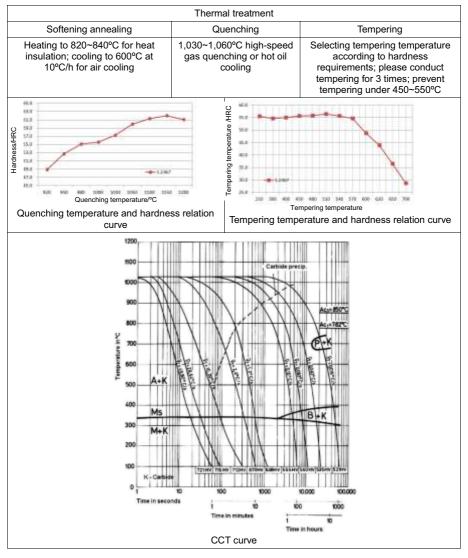
Clas	ss A	Cla	ss B	Clas	ss C	Clas	ss D
Fine	Coarse	Fine	Coarse	Fine	Coarse	Fine	Coarse
1.0	0.5	1.5	1.0	1.0	1.0	1.5	1.0

Delivery state:

(1) Delivery hardness: delivery under annealing state, delivery hardness ≤229HB;

(2) Organization state and impact power requirement: comply with North American Die Casting Association No. 207 criterion;

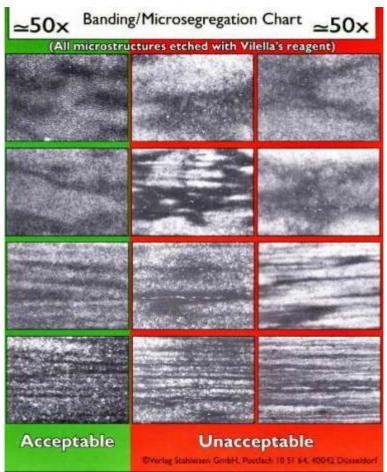
(3) Impact power sample: please sample according to the central part of steel. The samples shall be treated according to criterions in North American Die Casting Association, making sure that hardness of samples at 45±2HRC. Dimension of samples: 7*10*55. Gapless.


Specification (diameter, thickness mm)	Average impact power at the center part not less than (J)	Minimum impact power per sample not less than (J)
>60~300	300	250
>300	280	220

Supply specification:

Product name	Specification/mm	Material
Forged round bar	Ф70~500	1.2367 SUP
Forged module	(120~400)* (300~800)	1.2367 SUP
Rolled round bar	Φ16~70	1.2367 SUP
Rolled flat bar	(12~120)* (200~810)	1.2367 SUP

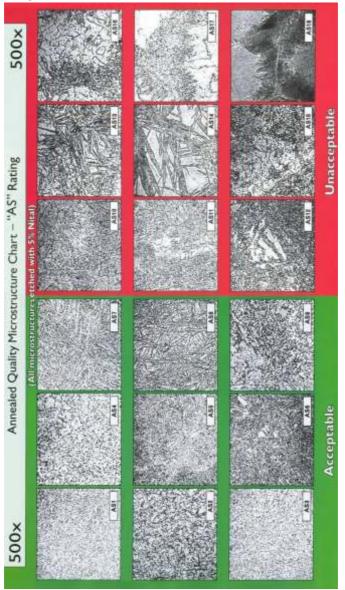
Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, guality and/or performance.



Steel grade (1.2367 SUP)

ADCA organization evaluation atlas

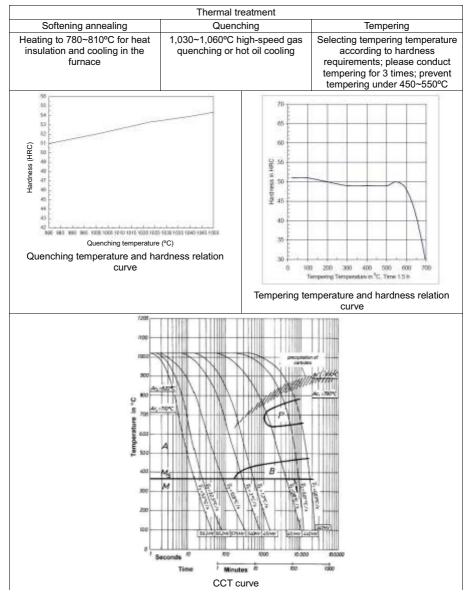
Banding microsegregation chart


Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

www.tgkssl.com

HOT WORK STEEL

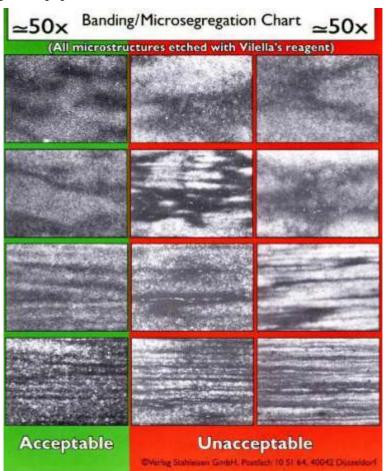
Balling annealing microstructure chart



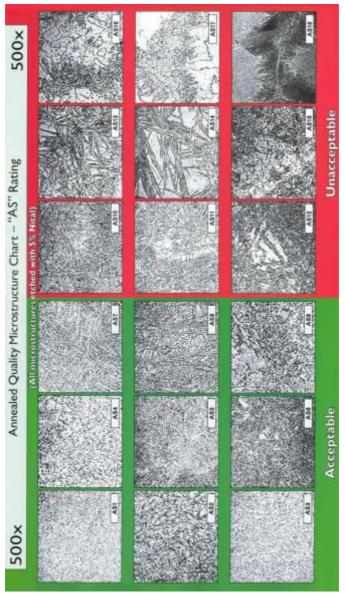
Steel grade (H10)

Smelting method: EAF+LF+VD+ESR										
h charact	eristics:									
orable so	ftening resist	ance und	der h	iigh temperati	ure and high	thermal fatig	ue crack	s.		
or applica	itions:									
	,									
•	•									
				_					-	
-							-		S	
0.32	0.25	0.3		3.0	2.7	0.5	≤0.02	25	≤0.008	
sical prop	erty:									
Room			-		Elastic		ar expan	sivity	(×10 ⁻⁶ K)	
		-	C			20~2	00°C	2	0~400°C	
-				(vv/m•K)	(N/mm)					
7.88		• ·		30	207.000	13	3.3		14.2	
sonic fla	w detection.				. ,					
		as per SE	EP19	21- E/e flaw	detection or C	GB/T6402-20	08 Class	s 4, o	r as per	
	uirements.									
,	ο Δ		Cla	ee B	Class C			Class D		
							Eine		Coarse	
-		-							1.0	
									1.0	
ery state	(2) Organi	zation sta	ate a	ind impact po	wer requirem				nerican Die	
olv specif		000010101	1110	. Lor ontonor	•					
				S	pecification/m	m		Ma	iterial	
									110	
Ū.									110	
	0		Φ16~70					H10		
Rolled round bar Rolled flat bar				(12~120)* (200~810) H10						
	characterization of characterizatio of characterization of characterization of charact	characteristics: rrable softening resist rrable softening resist rraplications: Hot punch; Hot forging die; Hot shearing blade; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si 0.32 0.25 dical property: Room Specifing of regime in the standard: a sonic flaw detection: of detection standard: a sonic flaw detection: of detection standard: a soner requirements. y: Class A Fine Coarse 1.0 0.5 rery state: (1) Delivery (2) Organic Casting As ply specification: Product name Forged round ba Forged module	icharacteristics: irable softening resistance und ir applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn 0.32 0.25 0.3 ideal property: Room Specific heat of room temperature density (/Kg·K) 7.88 460 sonic flaw detection: of detection standard: as per SE omer requirements. y: Class A Fine Coarse Fine 1.0 0.5 1.5 rery state: (1) Delivery hardnes: (2) Organization sta Casting Association product name Forged round bar Forged module	i characteristics: irable softening resistance under h ir applications: Hot punch; Hot forging die; Hot shearing blade; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn 0.32 0.25 0.3 ideal property: Room Specific heat of room density temperature of room density (Kg/m ³) (/Kg·K) 7.88 460 sonic flaw detection: detection standard: as per SEP19 omer requirements. y: Class A Class Fine Coarse Fine 1.0 0.5 1.5 rery state: (1) Delivery hardness: d (2) Organization state a Casting Association No obly specification: Product name Forged round bar Forged module	i characteristics: rable softening resistance under high temperature r applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr 0.32 0.25 0.3 3.0 ical property: Room Specific heat of room temperature of room temperature of room temperature (Kg/m³) (/Kg·K) 7.88 460 30 sonic flaw detection: detection standard: as per SEP1921- E/e flaw of the other service	i characteristics: rable softening resistance under high temperature and high i r applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr Mo 0.32 0.25 0.3 3.0 2.7 ical property: Room Specific heat of room conductivity modulus density temperature of room conductivity (W/m•K) (N/mm²) (Kg/m³) (/Kg·K) 7.88 460 30 207,000 sonic flaw detection: detection standard: as per SEP1921- E/e flaw detection or Comer requirements. y: Class A Class B Class Fine Coarse Fine Coarse Fine 1.0 0.5 1.5 1.0 1.0 rery state: (1) Delivery hardness: delivery under annealing stat (2) Organization state and impact power requirem Casting Association No. 207 criterion. by specification: Product name Specification/m Forged round bar Φ70~650 Forged module (120~350)* (300-	characteristics: rable softening resistance under high temperature and high thermal fatiginal properties: Hot punch; Hot punch; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr Mo V 0.32 0.25 0.3 3.0 2.7 0.5 icial property: Room Specific heat 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20-2 (Kg/m³) (/Kg·K) (W/m•K) (N/mm²) 20-2 (Kg/m³) (/Kg·K) 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20-2 (Kg/m³) (/Kg·K) (W/m•K) (N/mm²) 20-2 (Kg/m³) (/Kg·K) 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20-2 (Kg/m³) (/Kg·K) 20-2 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20-2 (Kg/m³) (/Kg·K) 20-2 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20-2 (Kg/m³) (/Kg·K) 30 207,000 13 30 <t< td=""><td>r characteristics: rable softening resistance under high temperature and high thermal fatigue cracks r applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr Mo V P 0.32 0.25 0.3 3.0 2.7 0.5 ≤0.02 ical property: Room Specific heat of room temperature of room temperature (W/m-K) (N/mm²) 7.88 460 30 207,000 13.3 sonic flaw detection: detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class of the coarse of</td><td>c characteristics: raple softening resistance under high temperature and high thermal fatigue cracks. r applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr Mo V P 0.32 0.25 0.3 3.0 2.7 0.5 ≤0.025 icial property: Room Specific heat 200°C thermal conductivity Inear expansivity 20~200°C 2 (Kg/m³) (/Kg·K) (W/m·K) (N/mm²) 20~200°C 2 (Kg/m³) (/Kg·K) (W/m·K) (N/mm²) 20~200°C 2 (Kg/m³) (/Kg·K) (W/m·K) (N/mm²) 20~200°C 2 (Kg/m³) (/Kg·K) 30 207,000 13.3 sonic flaw detection: detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class 4, o omer requirements. y: Class A Class B Class C Class 1.5 1.0 1.0 1.5 interperature comerequirements. y: (2) Organization</td></t<>	r characteristics: rable softening resistance under high temperature and high thermal fatigue cracks r applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr Mo V P 0.32 0.25 0.3 3.0 2.7 0.5 ≤0.02 ical property: Room Specific heat of room temperature of room temperature (W/m-K) (N/mm ²) 7.88 460 30 207,000 13.3 sonic flaw detection: detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class of the coarse of	c characteristics: raple softening resistance under high temperature and high thermal fatigue cracks. r applications: Hot punch; Hot forging die; Hot shearing blade; Hot extrusion molds. mical constituent %: C Si Mn Cr Mo V P 0.32 0.25 0.3 3.0 2.7 0.5 ≤0.025 icial property: Room Specific heat 200°C thermal conductivity Inear expansivity 20~200°C 2 (Kg/m ³) (/Kg·K) (W/m·K) (N/mm ²) 20~200°C 2 (Kg/m ³) (/Kg·K) (W/m·K) (N/mm ²) 20~200°C 2 (Kg/m ³) (/Kg·K) (W/m·K) (N/mm ²) 20~200°C 2 (Kg/m ³) (/Kg·K) 30 207,000 13.3 sonic flaw detection: detection standard: as per SEP1921- E/e flaw detection or GB/T6402-2008 Class 4, o omer requirements. y: Class A Class B Class C Class 1.5 1.0 1.0 1.5 interperature comerequirements. y: (2) Organization	

Steel grade (H10)



NADCA organization evaluation atlas


Banding microsegregation chart

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Balling annealing microstructure chart

Steel grade (TG H-21 DIN-2581)

Steel Properties: Hot work steel with good toughness include tungsten Chromium Carbon Vanadium usually is working hardness is 40.0 to 55.0 HRC size available in round, flat and square.

Applications: The H21 tungsten hot-work tool steels are mainly used for hot-working dies and toolings, e.g., die casting, extrusion and hot-forming of parts.

Chemical Composition: (%)

				Chem	ical Ana	lysis Typ	oical Val	ue % (Mi	in - Max))			Delivery Condi	tion
	IS	С	S	Р	Si	Mn	Ni	Cr	Мо	V	W	other	Heat Treatment	Hardness
	H21	0.26- 0.36	***	***	0.15- 0.50	0.15- 0.40	***	3.00- 3.75	***	0.30- 0.60	***	***	Annealed	≤Hb240
PRODUCTION PROCESS: Round Bar: EAF \rightarrow LF \rightarrow VD \rightarrow ESR \rightarrow (5TONS HAMMER) Forged Annealed Turned : ϕ 81.0-310mm : ϕ 14.5-80.0mm : ϕ 14.5-80.0mm : ϕ 2.0 -14.4mm														
	F lat Bar EAF→L		D→E	SR →	FOR	GED-	→ HO	T ROL	LED	(850)	\rightarrow AN	NEAL	.ED CONDI	TION
	JT STAI AISI H21			2CDV	12-28			DUCT 1:4 or		RATIO	:		LIVERY STA	
	SIZE : R	Round	s											

Cold Drawn/Ground Bar	Hot Rolled Annealed & Peeled Bar	Forged + Annealed + Turned Bar
Ф 2.0-14.4mm	014.5-80.0mm	Ф81.0-810.0mm

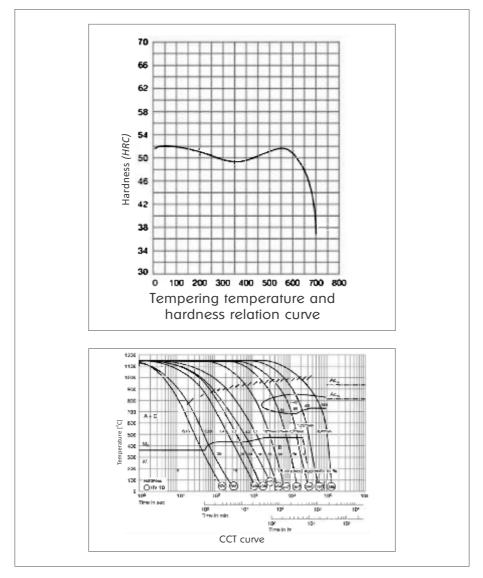
SIZE : Hot Rolled Flat Bars / Sand Blasted & Machined Straight

Thickness	Width
5mm - 410mm	10mm - 810mm

Heat Treatment Condition :

Soft annealing°C : 780 - 800°C

Hardening^oC : max. 240^oC


Quenching : Air, oil or warmbath, 600-650°C

Tempering °C	100ºC	200°C	300°C	400°C	500°C	550°C	600°C	650°C	700°C
HRC	49HRC	49HRC	49HRC	49HRC	51HRC	51HRC	50HRC	46HRC	36HRC

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TG H-21 DIN-2581)

Steel grade (DB6 - DIN 1.2714)

Characteristics : Classic die steel like grade 2713, but with better tempering properties and better through-hardening properties to a reference diameter of 450mm. For larger dimensions we recommend grade 2714 ISO-B MOD or hardening and tempering after contour roughing. For hardness up to 440 HB (Δ approx. 1500 MPa).

Applications : Large press dies for forming aluminium, forging dies for large quantities regardless of die size and shape of cut, die and mould holders, tool holders and cold forging die holders, tool cassettes. Hydroforming moulds (IHU).

Chemical Composition: (%)

Standards		Chem	nical An	alysis ⁻	Typical	Value %	6 (Min -	Max)		Delivery Co	ondition
IS	С	S	Р	Si	Mn	Ni	Cr	Мо	V	Heat Treatment	Hardness
55NiCrMoV 7	0.50- 0.60	≤0.004	≤0.030	1.10- 0.40	0.60- 0.90	1.50- 1.80	0.80- 1.20	0.35- 0.55	0.05- 0.15	Quench & Tempered	≤ Hb 360-400

Physical Properties (reference value)

Thermal expansion coefficient (10 ⁻⁶ /K)	20-100 °C 12.2	20-250 °C 13.1	20-500 °C 14.2
Thermal conductivity (W/mK)	20 °C 36.0	250 °C 37.5	500°C 34.5
Young's modulus (GPa)	20 °C 215	250 °C 198	500 °C 175

High-temperature yield strength

	0.2% yield strength in MPa at temperature								
Quenched and tempered state	450°C	500°C	550°C	600°C					
~ 1570 MPa	900	740	460	220					
~ 1370 MPa	810	590	390	200					
~ 1180 MPa	610	460	280	150					

PRODUCTION PROCESS:

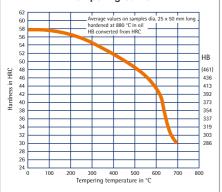
Rounds :

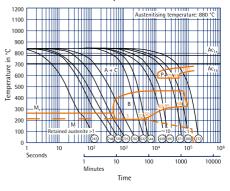
102 , 112 , 122, 132 , 142 , 152, 162, 172, 182, 202, 212, 222, 232, 242 , 252, 262 ,272, 282 , 302, 322, 330, 342, 352, 382, 392, 402 , 412, 435 , 452, 482, 512 , 532 , 603 , 653

Flat Bar:

 $EAF \rightarrow LF \rightarrow VD \rightarrow HOT FORGED \rightarrow ANNEALED \rightarrow OIL QUENCH & TEMPERED \rightarrow 2 TIMES TEMPERED \rightarrow 6 SIDES MACHINED (Blocks) \rightarrow TURNED BRIGHT (Rounds)$

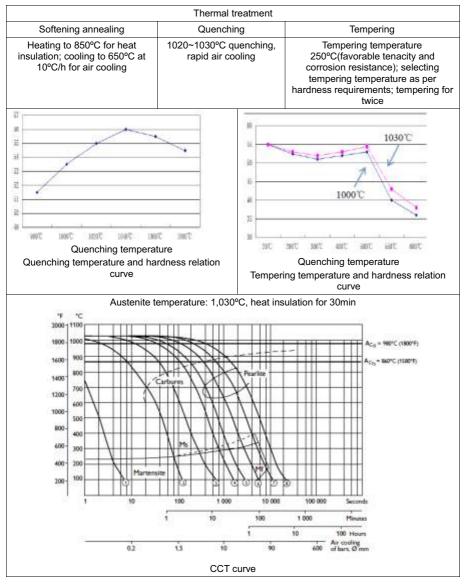
ULTRASONIC TEST :	CLEANLINESS STANDARD :	REDUCTION RATIO :
OK According to SEP 1921, (DEC.84) D/d	ASTM E-45-METHOD A	Min. 4/5 : 1


GRAIN SIZE ACC TO ASTM E112 : 6 AND FINER **DELIVERY STATUS :** In Quench & Tempered Condition


Steel grade (DB6 - DIN 1.2714)

Heat Treat	ment													
Stress re	lievin	g	D	empera uration ooling	:	Appro 1 hour furnac	r per 5							
Soft anne	ealing		D	empera uration ooling	:	700 °C 1 hour furnac	r per 2	5mm w	all thio	kness				
Hardenin	g			Temperature : 880 °C Duration : 1 minute per mm wall thickness										
Quenchir	ng har	dness	M	Max. 58 HRC : in water/oil, protective atmosphere/oil, oil, hot bath or vacuum										
Temperin	g		D	empera uration ooling	:	See te 1 houi Air		0		kness				
Working	hardn	ess	30	300-440 HB depending on application										
Note: Pre-hea	ating of	the tools	s to 250	-280 °C	is reco	mmende	ed.							
Width Thickness	210	260	310	360	410	460	510	560	610	660	710	810	1010	1500
210	00	00	00	00	00	00	00	00	00	00	00	00	00	00
260		00	00	0000	00	00	00	00	00	00	00	00	00	00
310			00	00	00	00	00	00	00	00	00	00	00	00
360				00	00	00	00	00	00	00	00	00	00	00
410					00	00	00	00	00	00	00	00	00	00

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

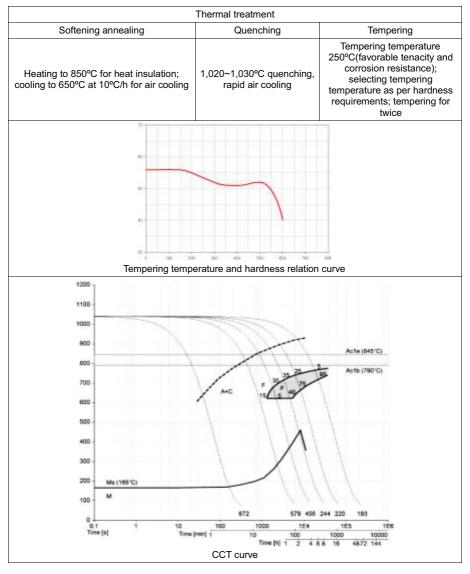


Steel grade (TGS136)

0.41.050.5513.50.30.220.3 ≤ 0.03 ≤ 0.1 Physical property:Room temperature density (Kg/m ³)Specific heat of room temperature (J/Kg·K)200°C thermal conductivity (W/m•K)Elastic modulus (N/mm ²)Linear expansivity (×107.8046523241,00011.211.5Ultrasonic flaw detection: Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements.Purity:Class AClass BClass CClass DFineCoarseFineCoarseFineCoa1.00.51.51.01.01.01.51.0Delivery state: (1) Delivery hardness: delivery under annealing state, <255HB.Supply specification:	Smelting me			LF+VD+ES	R									
favorable machining performance. Major applications:							_:		h:					
♦ Super-mirror plastic molds: molds for optical lens and other transparent plastic pieces; ♦ Corrosion preventive high-resisting molds: Molds for fold vessels, cosmetics vessels, m devices, light guiding plates, bottle covers, etc. ♦ Formed resin materials: PC, PVC, PP, PE, PF, PMMA, adding fire retardant resin, etc. Chemical constituent %: C Si Mn Cr Mo Ni V P Si 0.4 1.05 0.55 13.5 0.3 0.22 0.3 ≤0.03 ≤0.1 Physical property: Specific heat of temperature density Specific heat of (M/m*K) 200°C thermal conductivity Linear expansivity (×10 7.80 465 23 241,000 11.2 11.5 Ultrasonic flaw detection: Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements. Purity: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.5 1.0					ice, lavorat	Die corro	sion	resistant	ce, ni	gn abras	sion resi	stan	ice and	
♦ Corrosion preventive high-resisting molds: Molds for fold vessels, cosmetics vessels, m devices, light guiding plates, bottle covers, etc. ♦ Formed resin materials: PC, PVC, PP, PE, PF, PMMA, adding fire retardant resin, etc. Chemical constituent %: C Si Mn Cr Mo Ni V P Stemation C Si Mn Cr Mo Ni V P Stemation Chemical constituent %: C Si Mn Cr Mo Ni V P Stemation 0.4 1.05 0.55 13.5 0.3 0.22 0.3 ≤0.03 ≤0.1 Physical property: Room Specific heat of room 200°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) Linear expansivity (×10 (Kg/m³) (J/Kg·K) 20%°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20~200°C 20~400 (Kg/m³) (J/Kg·K) (W/m•K) (N/mm²) 20~200°C 20~400 (Kg/m³) (J/Kg·K) 20%°C thermal conductivity (W/m•K) Elastic modulus (N/mm²) 20~200°C 20~400 (Kg/m³) (J/Kg·K) CMm•K) (W/m•K) Ni 20~200°C 20~400 (Kg/m³) (J/Kg·K) CMm•K) (W/m•K) Ni 11.2 11.5 Ultrasonic flaw detection: Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements. Purity: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine<	Major applic	cation	IS:											
devices, light guiding plates, bottle covers, etc. $\Rightarrow \text{ Formed resin materials: PC, PVC, PP, PE, PF, PMMA, adding fire retardant resin, etc.}$ Chemical constituent %: $\boxed{C Si Mn Cr Mo Ni V P} Si Si O.4 1.05 0.55 13.5 0.3 0.22 0.3 \le 0.03 \le 0.03$												'		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	devices	s, ligh	t guidin	g plates, b	ottle covers	, etc.							els, medica	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					VC, PP, PE	:, PF, PN	IIVIA	, adding i	nre re	etardant	resin, e	IC.		
Physical property:Specific heat of room temperature (Kg/m³)Specific heat of room temperature (J/Kg·K) $200^{\circ}C$ thermal conductivity (W/m•K)Elastic modulus (N/mm²)Linear expansivity (×10/20~200°C) $20~400$ 7.8046523241,00011.211.5Ultrasonic flaw detection:Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements.Purity:Class AClass BClass CClass DFineCoarseFineCoa1.00.51.51.01.01.01.51.0Delivery state: (1) Delivery hardness: delivery under annealing state, <255HB.					Cr	Мо		Ni		V	Р		S	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0.4	1.	05	0.55	13.5	0.3		0.22		0.3	≤0.0	3	≤0.015	
temperature density (Kg/m³)room temperature (J/Kg·K)200°C thermal conductivity (W/m•K)Elastic 	Physical pro	operty	/:											
temperature density (Kg/m³)room temperature (J/Kg·K)conductivity (W/m•K)modulus (N/mm²) $20~200^{\circ}C$ $20~400^{\circ}C$ 7.8046523241,00011.211.5Ultrasonic flaw detection: Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements.Purity:Class AClass BClass CClass DFineCoarseFineCoarse1.00.51.51.01.01.51.0Delivery state: (1) Delivery hardness: delivery under annealing state, <255HB.			Specif	fic heat of	200°C th	hermal		Flastic		Linea	r expan	sivity	/ (×10 ⁻⁶ K)	
(Kg/m³)(J/Kg·K)(W/m•K)(N/mm²)20 20 020 4007.8046523241,00011.211.5Ultrasonic flaw detection: Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements.Purity:Class AClass BClass CClass DFineCoarseFineCoa1.00.51.51.01.01.01.51.0Delivery state: (1) Delivery hardness: delivery under annealing state, <255HB.									6					
Ultrasonic flaw detection: Flaw detection standard: as per GB/T 6402-2008 Class 4 flaw detection standard or as per custom requirements. Purity: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.5 1.0 Delivery state: (1) Delivery hardness: delivery under annealing state, ≤255HB. Supply specification: Supply specification:					(W/n	℩∙ Κ)		(N/mm ²	2)	20~2	00°C	2	0~400°C	
Flaw detection standard or as per custom requirements. Purity: Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coa 1.0 0.5 1.5 1.0 1.0 1.5 1.0 Delivery state: (1) Delivery hardness: delivery under annealing state, ≤255HB. Supply specification: Supply specification:	7.80			465	23	6		241,000)	11	.2		11.5	
Class A Class B Class C Class D Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1.5 1.0 Delivery state: (1) Delivery hardness: delivery under annealing state, ≤255HB. Supply specification: Supply specification: Supply specification:	Flaw detect requirement	ion st			8/T 6402-20)08 Clas	s 4 fl	aw deteo	ction	standaro	l or as p	er c	ustomer	
Fine Coarse Fine Coarse Fine Coarse 1.0 0.5 1.5 1.0 1.0 1.0 1.5 1.0 Delivery state: (1) Delivery hardness: delivery under annealing state, ≤255HB. Supply specification: Supply specification:<	,				Class P			Class	<u> </u>			1000		
1.0 0.5 1.5 1.0 1.0 1.0 1.5 1.0 Delivery state: (1) Delivery hardness: delivery under annealing state, ≤255HB. Supply specification: Supply specification: </td <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td>rse</td> <td>Fir</td> <td></td> <td>-</td> <td>se</td> <td colspan="2"></td> <td>Coarse</td>		1	-			rse	Fir		-	se			Coarse	
Supply specification:	-			-			1.	0			1.5		1.0	
	Delivery sta	te: (1) Delive	ry hardnes	s: delivery	under ar	nnea	ling state	9, ≤25	5HB.		-		
Pound stool Elet stool Medule	Supply spec	cificat	ion:											
round steel Flat steel Module	Round steel				Flat steel					Module				
Φ 16~500mm 16~120mm×200~610mm 120~300mm×300~1,000n	Φ 16~500mm				16~120mm×200~610mm					120~300mm×300~1,000mm				

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TGS136)


Steel grade (TGP50)

					-	•	-30)					
Smelting m	ethod	: EAF+I	_F+VD+E	SR								
Main chara	cteris	tics:										
Favorable o as well as h				prasion resis	stance	, quei	nching,	cutt	ing perfo	ormance	, and	polishabil
Major appli												
		of PVC r	nolds;									
♦ Long-li ♦ Molds			o toblowor	~.								
		•	e tablewar	e, example, ca	mera	s sun	alasses	len	s medic:	al vesse	ls etc	
Chemical c			purts, 101	example, ec	incra	5, 50H	giuoses	icii	5, mealo		10, 010	•
C	1	Si	Mn	Cr	M	lo	W		V		Р	S
0.42	≤1	.00	≤1.00	13.5	-	-	-		-	≤(0.03	≤0.005
Physical pr	operty	/:		1	1							1
Room		Specif	ic heat of	200°C the	rmal	F	lastic		Linea	ir expar	sivity	(×10⁻⁰K)
temperat densit			oom	conductiv			odulus					
(Kg/m			erature /Kg·K)	(W/m•ł	<)	1)	J/mm²)		20~20	00°C	20	0~400°C
7.8	,		460	24		22	20,000		10	.9		11.6
Purity:								1				
Electric furr	nace s	steel:										
CI	ass A			Class B			Clas	s C			Clas	s D
Fine	C	Coarse	Fine	Coa	rse	Fi	ne	С	oarse	Fine	e	Coarse
1.5		1.0	2.0	1.5	5	1	.5		1.0	1.5		1.5
	g stee	el:										
Electrosla	•											
	ass A			Class B			Class	s C			Class	s D
		Coarse	Fine		rse	Fi	Clas: ne		oarse	Fine		s D Coarse
CI			Fine						oarse 1.0	Fine 1.5	e	-
Cl Fine 1.0	C	Coarse 0.5	1.5	Coar)	1	ne .0	С	1.0		e	Coarse
Cl Fine 1.0 Delivery sta	(1 nte: (1	Coarse 0.5) delive	1.5	Coar)	1	ne .0	С	1.0		e	Coarse
Cl Fine 1.0 Delivery sta Supply spe	ate: (1	Coarse 0.5) delive	1.5	Coar)	1 livery	ne .0	С	1.0	1.5	e	Coarse

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (TGP50)

Steel grade (TGP80)

Smelting me	ethod	: EAF+L	F+VD+E	SR								
Main charac performance treatment is	e and	l texture										
devices	olasti s, etc.	c molds		arent plastic				trum	ent parts	, compa	act dis	ks, medical
Chemical co		•	scharging	processing	Sulla	ce qua	iity.					
C Si Mn Cu Mo Ni Al P S												
0.15	≤0	.45	1.55	1.0	0	.35	3.1	I	0.95	≤0.	025	≤0.003
Physical pro	operty	/:										
Room			c heat of	200°C the		_	lastic		Linea	r expan	sivity	(×10 ⁻⁶ K)
temperatu density (Kg/m ³	'	temp	om erature Kg·K)	conducti (W/m•			odulus N/mm ²)		20~20	00°C	20)~400°C
7.8		4	60	22		2	18,000		12.	3		13.2
Ultrasonic fl Flaw detect requirement Purity:	ion st			B/T 6402-20	08 CI	ass 4 t	law de	tectio	on standa	ard or as	s per c	customer
Class A	A (sul	fide)	Class	B (aluminate)		С	Class C (Silicate)		ate)	Cla	ss D ((oxide)
Fine	C	Coarse	Fine	Coa	rse	Fi	ne	Co	oarse	Fine	•	Coarse
0.5		0.5	1.0	1.0)	1	.0		1.0	1.5		1.0
Delivery sta		,	y under p	re-hardenin	g stat	e, deliv	/ery ha	rdne	ss 38~42	HRC.		
Supply spec	cincai		steel						Mod	ule		
	16~		×200~810)mm				120~	400mm×		0mm	
						1						

Steel grade (TGP80)

Steel grade TGP40 (1.2738 & 1.2738HH)

1 Main characteristics and applications

If features excellent hardening penetration, good workability, polishing and photoengraving properties. This steel is used for plastic moulds of medium and big size. It can be subject to a nitriding treatment to improve its wear resistance. Main application: injection and thermoplastic extrusion moulds, rubber moulds, moulds carrier frames, containers.

2 Comparable standards

UNI	W.Nr	DIN	AFNOR	AISI/SAE	BS
	1.2738	40CrMnNiMo8-6-4	~40 CMND8	~P20 + Ni	~P20 + Ni

3 Chemical analysis

С	Mn	Si	Cr	Мо	Ni	P+S	
0.35	1.30	0.20	1.80	0.15	0.90		
0.45	1.60	0.40	2.10	0.25	1.20	0.030	

4 Critical points

Ac1 710°C

Ms 290°C

5 Supply Conditions

Hardened and Tempered Normal HB 300-340 & 360-400

6 Heat treatments

Annealing

 Heat to 710 - 740°, with hold at minimum rate for 3 hours Slow furnace cooling to 600°C

Stress relieving

- To be carried out after machining and before the final heat treatment
- Heating to 530 -580 °C for 2 h

Hardening

- Preheating to 500-550 °C
- Austenitizing at 840-880 °C
- Oil or thermal bath cooling at 200-230°C, then oil cooling according to the steel shape size
- Quenched hardness 52-54 HRC

Tempering

- To be carried out soon after the hardening and when the steel is at 60-80 °C, at 500 600 °C according to the required hardness and with permanence for at least 2 h
- Cooling in air

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

Steel grade (1.2311 Reference standard UNI EN ISO 4957)

1 Main characteristics and applications

Steel with excellent hardening penetration up to 400 mm. Generally supplied in hardened and tempered condition with excellent polishing and photoengraving Properties. This steel is suitable for nitriding (around 800 HV), chrome and nickel plating .

Used for plastic dies with excellent surface finish properties. It is also used for dies of light alloys with low melting point, plates, dies box, etc.

2 Comparable standards

UNI	W.Nr	DIN	AFNOR	AISI/SAE	BS
	1.2311	X40CrMnMo7	40CMD8	~P20	~P20

3 Chemical analysis

° '	√ln	SI	Cr	Мо	Ni	P+S
0.35 1	.30 0).20 ·	1.80	0.15		
0.45 1	.60 0	0.40 2	2.10	0.25		0.030

4 Critical points

Ac1 740°C

Ms 310°C

5 Supply Conditions

Hardened and Tempered HB 280-325 (950-1100N/mm²)

6 Heat treatments

Annealing

Heat to 720-750 °C for 2-4 h furnace cool

Stress relieving

- Up to 560 600 °C, hold for 2-4 h
- Furnace or steel air cooling

Hardening

- Preheating to 600-650 ° C
- Heat to hardening temperature to 840 870 °C and hold at temperature
- Cooling in oil
- Hardness after hardening : HRC 51

Tempering

 To be carried out soon after the hardening in the range 580 - 650°C for 1 hour for 25 mm of thickness minimum 2h

TITANIUM

INGOT CASTING: The titanium bar we offer are using the domestic high- quality sponge as a raw mattly, forging and machining processes, products in full compliance with GB/T2965, ASTMB348 standard, chemical composition uniform and mechanical properties stable, meeting the user's application requirements. Products used in various types of titanium and titanium alloy tube manufacturers for hor-rolling, but also the chemical industry, energy medical equipment and other related industries, typical applications: Titanium and titanium alloy bar for hot-rolling: composits rod with bar (the compound o titanium rods, etc.); Medical devices and surgical implants; Titanium and titanium alloys standard parts (screws, nuts, etc.) Leisure Products (gol success, etc.)					
Commodity name	Designation number	Dimensions (mm)	Carries out the standard		
Ingot casting	TA1-TA3, TA5-TA7, TA8-TA9, TA10, TC1-TC2, TC3-TC4, TC9, TC10, Gr1-Gr5, Gr7, Gr9, Gr11, Gr12, Gr13	Ф300 -Ф600	A9TM, JIS, AMS, MIL, GB/T36201		
	TITANIUM BAR: The titanium ba titanium sponge as a raw matth forging and machining processes ASTMB348 standard, chemica properties stable, meeting the us in various types of titanium alloy t chemical industry, energy, medi typical applications: Titanium and rod with bar (the compound of tita implants; Titanium and titanium Leisure Products (golf success, et	y, strictly control an- , products in full cor al composition Un er's application requ ube manufacturers fo cal equipment and I titanium alloy bar f nium rods, etc.); Mec alloys standard pa	d quality such as ingot, mpliance with GB/T2965, iform and mechanical irements. Products used or hor-rolling, but also the other related industries, for hot-rolling: composits tical devices and surgical		
Commodity name	Designation number	Dimensions (mm)	Carries out the standard		
Titanium Bar	TA1-TA3, TA5-TA7, TA8-TA9, TA10, TC1-TC2, TC3-TC4, TC9, TC10, Gr1-Gr5, Gr7, Gr9, Gr11, Gr12, Gr13	Ф8 -Ф600	A9TM, JIS, AMS, MIL, GB/T2965, GB/T13810		
TITANIUM SHEET: The titanium sheet we offer are using the domestic high- quality titanium sponge as a raw mattly ricterial, strictly control the quality from raw materials selection, ingot, billet to forging eolling processes, products in full compliance with GB/T3621, ASTMB265 standard, related technical indicators have reached the advanced level in the industry, meeting the user's application requirements. Product are widely used in petrochemical, sait, offshore industry, energy generation and other industries, typical applications include: Various types of titanium equipment; Ion-exchange membrane, divide slot; Titanium anodes of boards, basket; Leisure Products(Titanium Case, first-class golf); Used with other metals (copper) composite sheet; Titanium and titanium alloys in construction board.					
Commodity name	Designation number	Dimensions (mm)	Carries out the standard		
Titanium Sheet	TA1-TA3, TA5-TA7, TA8-TA9, TA10, TC3-TC4, TC9, TC10, Gr1-Gr5, Gr7, Gr9, Gr11, Gr12	(0.5-60) x (400-2000) x (1000-3000)	ASTM, JIS, GB/T3621, GB/T14845		

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

TITANIUM

	TITANIUM TUBE: Our company used high quality titanium rods as raw materials, strictly according to the production quality control standards, products in full compliance with GB/T3624, GB/T3625, ASTMB337, ASTMB338 standard, related technical indicators have reached the advanced level in the industry, meeting the user's application requirements. Products are widely used in petrochemical, salt, offshore industry, energy generation and other industries, typical applications include: Heat exchangers and condensers; All kinds of corrosive fluid transmission pipeline system; Titanium bicycle tube, automobile exhaust pipe; offshore aquaculture.			
Commodity name	Designation number	Dimensions (mm)	Carries out the standard	
Titanium Tube	TA1-TA3, TA5-TA7, TA8-TA9, TA10, Gr1-Gr2, Gr7, Gr9, Gr11, Gr12	(6-120) x (0.5-10) x (1000-15000)	ASTM, AMS, JIS, GB/T2624, GB/T3625	

HSS CUTTING TOOLS

- HSS STRAIGHT SHANK TWIST DRILL
- HSS TAPER SHANK TWIST DRILL
- HSS TAPS
- HSS END MILL
- REAMERS

- OTHER GENERAL TOOLS
- CARBIDE TIP DRILLS
- HSS DRILL BLANKS
- DRILL SET

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

PRODUCT	DESCRIPTION	SPECIFICATION
	SANSA TWIST DRILLS	
	Parallel Shank Twist Drills (Stub Series)	IS 5100 : 2002 ISO 235 : 1980 BS 328 Part 1 : 1993 DIN 1897 : 1984
	Parallel Shank Twist Drills (Jobber Series)	IS 5101 : 2002 ISO 235 : 1980 BS 328 Part 1 : 1993 DIN 338 : 1984
	Parallel Shank Twist Drills (Long Series)	IS 5102 : 2002 ISO 494 : 1975 BS 328 Part 1 : 1993 DIN 340 : 1987
	Parallel Shank Twist Drills (Extra Long Series)	IS 7823 : 2005 ISO 3292 : 1995
CIBBBB	Taper Shank Twist Drills (With Standard Shank)	IS 5103 : 2002 ISO 235/1 : 1980 BS 328 Part 1 : 1993 DIN 345 : 1978
	Taper Shank Twist Drills (With Oversize Shank)	IS 5104 : 2002 ISO 235/1 : 1980 BS 328 Part 1 : 1993
	Taper Shank Twist (Long Series)	IS 8305 : 2002 DIN 341 : 1976
	Taper Shank Twist (Extra Long Series)	IS 7822 : 2005 ISO 3291 : 1995
	Taper Shank Core Drills	IS 5366 : 2002 ISO 7079 : 1981 BS 328 Part 3 : 1990 DIN 343 : 1981
	Shell Core Drills	IS 7772 : 2002 ISO 3314 : 1975 BS 328 Part 4 : 1990
	Centre Drill Type 'A'	IS 6708 : 2002 ISO 866 : 1975 DIN 333 : 1986
	Centre Drill Type 'B'	IS 6709 : 2002 ISO 2540 : 1972 DIN 333 : 1986
	Centre Drill Type 'R'	IS 6710 : 2002 ISO 2541 : 1972 DIN 333 : 1986
	Centre Drill B. S.	BS 328 Part 2 : 1990
	Parallel Shank Subland Twist Drill	IS 12691 : 1999 ISO 3439 : 1975 DIN 8378 : 1981
-1.554	Taper Shank Subland Twist Drill	IS 12687 : 1999 ISO 3438 : 1975 DIN 8379 : 1981
	Taper Shank Twist Drills For Taper Pin Holes	IS 5364 : 2002
	Masonry Drills-Carbide Tipped	Specifications conforms to : ITM Standard
	Technical Section	
Concession in the local division of the loca	REAMERS	
	Parallel Hand Reamers	IS 5444 : 2002 ISO 236/1 : 1976 BS 328 Part 4 : 1990 DIN 206 : 1979
	Long Fluted Machine Reamers	IS 5445 : 2002 ISO 236/2 : 1976 BS 328 Part 4 : 1990
	Parallel Machine Reamers	BS 328 Part 4 : 1990
	Machine Chucking Reamers with Parallel Shank	IS 5446 : 2002 ISO 521 : 1975 BS 328 Part 4 : 1990
	Machine Chucking Reamers with Taper Shank	IS 5447 : 2002 ISO 521 : 1975 BS 328 Part 4 : 1990
	Machine Jig Reamers with Taper Sahank	Dimensions are in mm Specifications conform to: IS 11002 : 1999
0	Shell Reamers	IS 5926 : 2002 ISO 2402 : 1976 DIN 219:1981(Type A) BS 328 Part 4 : 1990
	Socket Reamers with Parallel Shank	IS 5882 : 2002 ISO 2250 : 1972 BS 328 Part 4 : 1990

PRODUCT	DESCRIPTION	SPECIFICATION
	Socket Reamers with Taper Shank	IS 5907 : 2002 BS 328 Part 4 : 1990
	Taper Pin Hand Reamers	IS 5881: 1991 DIN 9: 1975 ISO 3465: 1975 BS 122 Part 2:1964 BS 328 Part 4:1990
	Taper Pin Machine Reamers	IS 5918 : 1999 DIN 2180 : 1975 ISO 3467 : 1975 BS 122 Part 2:1964 BS 328 Part 4:1990
	Machine Bridge Reamers	IS 5919 : 2002 ISO 2238 : 1972 BS 328 Part-4 : 1990 BS 122 Part-2 : 1964
	Hole Mills-Unguided Type 'A' (Roughing)	IS 5989 : 2002
-	Hole Mills-guided Type 'B' (Roughing/Finishing)	IS 5989 : 2002
	Taper Pipe Reamers	ASA B 94.2 : 1964
and the second s	Technical Section	
	MILLING CUTTERS (BORE TYPE)	
	Cylindrical Miling Cutter	IS 5309 : 2002 ISO 2584 : 1972 DIN 884 : 1976 BS 122 Part-1 : 1989
0	Side and Face Cutter (Straight Teeth & Staggered Teeth)	IS 6308 : 2002 ISO 2587 : 1972 DIN 1885 : 1976 BS 122 Part-1 : 1989
(ð	Shell End Mills	IS 6257 : 2002 ISO 2586 : 1973 DIN 1880 : 1976 BS 122 Part-1 : 1989
ø	Single Angle Cutters	IS 6324 : 2001 BS 122 Part-1 : 1989
	Double Angle Cutters	IS 6325 : 2001 BS 122 Part-1 : 1989
ALLED .	Equal Angle Cutters	IS 6326 : 2001 ISO 6108 : 1978 BS 122 Part-1 : 1989
e	Shell End Single Angle Milling Cutters	IS 6256 : 2000 DIN 842 (P-1) : 1984
100 M	Face Cutters	BS 122 Part-1 : 1989
0	Slotting Cutters	BS 122 Part-1 : 1989
0	Keyway Milling Cutters	IS 6355 : 2002 ISO 2585 : 1972 DIN : 1890 : 1976
	Hollow Mills	BS 122 Part-1 : 1989
0	Convex MIIling Cutters	IS 6323 : 2002 ISO 3860 : 1976 DIN 856 (Teil 1) : 1978 BS 122 Part-1 : 1989
	Concave Milling Cutters	IS 6322 : 2002 ISO 3860 : 1976 DIN 855 (Teil 1) : 1978 BS 122 Part-1 : 1989
209	Single Corner Rounding Cutter	IS 6314 : 2002 ISO 3860 : 1976 DIN 6513 (Teil 1) : 1978 BS 122 Part-1 : 1989
(T)	Double Corner Rounding Cutters	BS 122 Part-1 : 1989
	MILLING CUTTERS (SHANK TY	
	Parallel Shank Milling Cutters	IS 6352 : 2001 ISO 164/1 : 1978 BS 122 Part 1 : 1989
	Taper Shank Slot Milling Cutters	IS 6388 : 2001 ISO 164/2 : 1978 BS 122 Part 1 : 1989
	Parallel Shank End Mills	IS 6353 : 2001 ISO 1611/1 : 1978 DIN 844 (Part 1) : 1978 BS 122 Part 1 : 1989
	Taper Shank End MIIIs	IS 6354 : 2001 ISO 1641/2 : 1978 DIN 845 (Part 1) : 1981 BS 122 Part 1 : 1989

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

PRODUCT	DESCRIPTION	SPECIFICATION
ALC: NOT	Screwed Shank Slot Drills (Short Series, Long Series)	BS 122 Part 4 : 1980
Contraction of the local division of the loc	Screwed Shank End Mills (Short Series, Long Series)	BS 122 Part 4 : 1980
	T' Slot Cutters with Parallel Shank	IS 2668 : 2004 ISO 3337 : 2000
	T' Slot Cutters with Taper Shank	IS 2668 : 2004 ISO 3337 : 2000 BS 122 Part-1 : 1989
	Dove - Tail Milling Cutters	IS 6255 : 2000 ISO 3859 : 1977 DIN:1833 (Tail 1):1983
	Woodruff Keyslot Milling Cutters with Parallel Shank	IS 2669 : 2001 BS 122 Part-1 : 1989
	Countersinks 90° with Parallel Shank & Solid Pilot	IS 5693 : 2002 ISO 4205 : 1991 BS 122 Part-1 : 1989 BS 328 Part-6 : 1992
	Countersinks 90° with MT Shank & Detachable Pilot	15 5703 . 2002
	Counterbores with Parallel Shank & Solid Pilot	IS 5704 : 2002 ISO 4206 : 1977 DIN 373 : 1975
	Counterbores with Taper Shank & Detachable Pilot	IS 5710 : 2002 ISO 4207 : 1977 BS 328 Part-5 : 1991 DIN 375 : 1975
	Countersinks with included angle 60°, 90° & 120° with parallel Shank	IS 13304 : 2002 DIN 334 : 1979 ISO 3294 : 1975 DIN 335 : 1979 DIN 347 : 1962
	Countersinks with included angle 60°, 90° & 120° with Taper Shank	IS 13303 : 2002 DIN 334 : 1979 ISO 3294 : 1975 DIN 335 : 1979 DIN 347 : 1962
	Technical Section	
	SCREWING TAPS	
	Hand & Short Machine Taps Coarse Pitch	IS 6175 Part 2:2002 ISO 529 : 1975 BS 949 Part 1:1992
	Hand & Short Machine Taps Fine Pitch	IS 6175 Part 2:2002 ISO 529 : 1975 BS 949 Part 1:1992
	Hand & Short Machine Taps Coarse Pitch	IS 6175 Part 3:2002 ISO 529 : 1975 BS 949 Part 1:1992
	Hand & Short Machine Taps Fine Pitch	IS 6175 Part 3:2002 ISO 529 : 1975 BS 949 Part 1:1992
	Hand & Short MAchine Taps BSW	BS 949 Part 1 : 1992
	Hand & Short MAchine Taps BSF	BS 949 Part 1 : 1992
	Hand & Short MAchine Taps UNC	BS 949 Part 1 : 1992
	Hand & Short MAchine Taps UNF	BS 949 Part 1 : 1992
-	Long Shank Machine Taps Coarse Pitch	IS 6175 Part 4 : 2001 ISO 2283 : 1972 BS 949 Part 1:1992
-	Long Shank Machine Taps Fine Pitch	IS 6175 Part 4 : 2001 ISO 2283 : 1972 BS 949 Part 1:1992
	NUT Taps Coarse Pitch	IS 6175 Part 5 : 2001
	NUT Taps - BSW	BS 949 : 1969
	NUT Taps - BSF	BS 949 : 1969
	NUT Taps - UNC	BS 949 : 1969
	NUT Taps - UNF	BS 949 : 1969

PRODUCT	DESCRIPTION	SPECIFICATION
010011	Hand Taps - BSCY	BS 949 Part 1 : 1992
	Hand Taps - BS (conduit)	BS 949 Part 1 : 1992
	Hand Taps - BA	BS 949 Part 1 : 1992
	Parallel Pipe Hand taps BSP	BS 949 : 1969
All and a second second	Parallel Pipe Taps - 'G' Series	IS 6175 Part 6 : 2002 ISO 2284:1987 BS 949 Part 3:1993
	Parallel Pipe Hand Taps - 'RP' Series	IS 6175 Part 7 : 2002 ISO 2284:1987 BS 949 Part 3:1993
	Taper Pipe Hand Taps - 'RC' Series	IS 6175 Part 8 : 2002 ISO 2284:1987 BS 949 Part 3:1993
	Taper Pipe Hand Taps - BSPT	BS 949 Part : 1969
	American National Straight Pipe Hand Taps - NPS	BS 949 Part : 1969
	American National Taper Pipe Hand Taps - NGT	BS 949 Part : 1969 ANSI B 494 : 1971
Committee Committee	American National Taper Pipe Hand Taps (Gas) - NPT	ITM Std.
	NIB Taps - Metric (Coarse)	ITM Std.
	NIB Taps - BSW	ITM Std.
	Technical Section	
	Ground Tools Bits	ITM Std.

Descriptions and data in the file are typical cases. We will not make guarantee for them. Besides, we reserve the final right to interpret improvement in materials, quality and/or performance.

CARBIDE CUTTING TOOLS

The world leading supporting production line for cemented carbide cutting tools is introduced into Taifeng International for the purpose of producing special cutting tools featuring strong market competitiveness, efficiency, precision and quality, thus Taifeng International can produce the cemented carbide products, including and mill, drill, reamer, molding knife and other cutting tools. The cemented carbide cutting tools produced have been widely applied in aviation, aerospace, shipbuilding, automobile, medical apparatus and instruments, chemical engineering. molding, IT mobile telephone shell and other fields.

With the most advanced German Walter five-axis linkage grinding machine and Walter sixaxis full-automatic CNC measuring instrument is adopted, with the measuring precision reaching 0.001mm. The measuring instrument shows more prominent performance in measurement of non-standard cutting tools, which can scan the outline of the profile cutting tool produced and then compare with the profile required by clients after profile scanning to ensure no error between the profile precision and the actual precision of the products processed.

In recent years the production of cemented carbide cutting tool in China has witnessed rapid development, but such tool only occupies about 40% of the market share; the medium and low end cutting tools are the majority, and the imported cutting tools are mainly used for military industry and automobile processing industry. Taifeng International seizes this opportunity and develops imported on itself to bring "Chinese" cutting tools to the world.

DRILL SERIES

- NC Centre Drills
- DC2MU Twist Drills for General Purpose
- DS2MU Twist Drills for Stainless Steel
- DH2MU Twist Drills for Hardened Steel
- DZ2MN Inner Straight Flute Drills for Cast Iron

ENDMILLS SERIES

- Endmills for Stainless and Cast Iron
- Endmills for Hardened Steels
- Endmills for Stainless Steels
- Endmills for Aluminium Alloys
- Endmills for Graphite

Mr. Nitin Doshi Managing Director Tel.: +91-22-6852 0014 - 39 Mr. Kushal Doshi Director Cell.: +91 99204 75123 kushal@tgkssl.com kushal_812@me.com Mr. L. K. Pandey Sales Representative Cell.: +91 93216 04504/00 kushal@tgkssl.com Mr. Sahil Shah Cell.: +91 99200 38787 E-mail: spshah44@gmail.com

REGD. OFFICE :

8th Floor, Majestic Shopping Centre, 144 JSS Road, Girgaon, Mumbai-400 004. Boardline : +91-22- 6852 0014-39

UNIT - I

Plot No-13-A, Gala No - 3/4/5, Magazine Street, Near Devidayal Compound, Darukhana, Reay Road [E], Mumbai-400 010. Maharashtra, INDIA. Tel.: +91-22-6852 0014 - 39

UNIT - II

Gala No. 3A/3B, Build 188, Gala No. 3, Build No. 183, C/o. Indian Corporation, Mouje Gundavli (Mankholi Phata), Taluka Bhiwandi, Dist: Thane. (Maharashtra) Tel.: 02522-661950 / 90222 66670

UNIT - III Mr. Keval Shah Cell.: +91 92246 40506 kushalmetal07@gmail.com

H-21/P, Nr. New Water Tank, Next to R. Kumar And Metals Road No. 32, Odhav GIDC, Odhav, Ahmedabad - 382 415.

